
THE GEORGE WASHINGTON UNIVERSITY
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

COLLISION AVOIDANCE SYSTEM
FOR THE

VISUALLY IMPAIRED

Final Product Review

By

Brandon Bernier and Srinivas Tapa

Prepared for:
Professor C. E. Korman
ECE 4925W Section 10:
ECBE Capstone Project Laboratory III

Edited: May 12, 2014

 - ii -

Abstract

 The Collision Avoidance System assists the visually impaired while they walk by
alerting them to obstacles in their path. It is capable of detecting obstacles at both head-
level within 5 feet and ground-level within 7 feet and alerting the user with automatic
audio alerts. The system consists of a peripheral device to detect head-level objects,
another to detect obstacles on the ground, and an Android™ smartphone application to
connect the system and generate the audio alerts. Two peripheral devices with integrated
ultrasonic sensors and accelerometers are used to detect obstacles and prevent collisions
while the user walks. A glasses-like headset ensures that the user is protected from
collisions at head-level and an additional small attachment placed on the user’s walking
cane senses obstacles on the ground. Both of these devices communicate with the
smartphone via Bluetooth® wireless technology. Additionally, the phone uses built-in text-
to-speech functionality to generate audio alerts that can be easily understood by the user.
Combined, the system protects the visually impaired from obstacles that are otherwise a
daily challenge and danger. This document describes the entire design process for the
Collision Avoidance System including all major design decisions, testing procedures,
preliminary test results, as well as an explanation of the breakdown of work between all
team members.

 - iii -

Table of Contents

Abstract .. ii

List of Figures .. v

List of Equations ... vi

List of Tables .. vi

List of Datasheets ... vi

1. Introduction .. 1
1.1. Background ... 1
1.2. Market Justification .. 2

2. Overall System Requirements and Specifications ... 3
2.1. Overall System Requirements ... 3
2.2. Overall System Specifications .. 4

3. Approach to Overall Design ... 5
3.1. Current Design ... 5
3.2. Evolution of the Current Design .. 7
3.3. Applicable Standards If Commercialized .. 10

4. Module Level – Requirements and Specifications ... 11
4.1. Headset & Cane Attachment Sub-Systems .. 11

4.1.1. Printed Circuit Board ... 11
4.1.2. Battery & Power Management ... 11
4.1.3. Ultrasonic Sensor ... 11
4.1.4. Accelerometer ... 11
4.1.5. Microcontroller ... 12
4.1.6. Bluetooth Transceiver ... 12

4.2. Android Application Sub-System ... 12
4.2.1. Bluetooth Connection ... 12
4.2.2. Data Processing (Algorithm) ... 13
4.2.3. Text-to-Speech Notification Generator ... 13

5. Individual Module Design .. 14
5.1. Headset and Cane Attachment Sub-Systems .. 14

5.1.1. Printed Circuit Board (PCB) .. 14
5.1.2. Battery & Power Management ... 14
5.1.3. Ultrasonic Sensor ... 15
5.1.4. Accelerometer ... 15
5.1.5. Microcontroller ... 16
5.1.6. Bluetooth Transceiver ... 16
5.1.7. Key Component Selection ... 16

5.2. Android Application Sub-System ... 17
5.2.1. Bluetooth Module .. 17
5.2.2. Data Processing (Algorithm) Module .. 18
5.2.3. Text-to-Speech Notification Generator ... 20

6. Module and System Tests ... 21
6.1. Overall System ... 21

 - iv -

6.2. Key Modules ... 22

7. Timeline Estimation and Milestones ... 25

8. Labor Costs Graph ... 25

9. Economic Analysis .. 26

10. Summary and Conclusions ... 29

11. Qualifications of Key Personnel ... 30
11.1. Brandon Bernier ... 30
11.2. Srinivas Tapa ... 30

12. Intellectual Contributions .. 31

13. Teaming Arrangements .. 31

14. References ... 32

15. Appendices .. 33
Appendix A: Mechanical Drawings .. 33
Appendix B: Software Flowcharts .. 36
Appendix C: Gantt Chart ... 40
Appendix D: Economic Analysis Data ... 42
Appendix E: Module Matrix .. 43
Appendix F: Board Fabrication Details .. 45
Appendix G: Test Results... 60
Appendix H: Source Code .. 62
Appendix I: Datasheets ... 70

 - v -

List of Figures
Figure 1.1: Example of walking cane and basic system implementation.3... 1
Figure 3.1: Context Diagram of entire system. ... 5
Figure 3.2: Data Flow Diagram showing individual sub-systems. ... 5
Figure 3.3: Data Flow Diagram for both Headset & Cane Attachment sub-systems. .. 6
Figure 3.4: Data Flow Diagram for Android application sub-system. .. 6
Figure 3.5: Tree Diagram of entire system. ... 7
Figure 3.6: Cane attachment 3D view. ... 8
Figure 3.7: Dimensional drawing of cane attachment. .. 8
Figure 3.8: Headset housing 3D view. .. 9
Figure 3.9: Headset housing dimensional drawing. ... 9
Figure 3.10: Sensor casing 3D view. ... 9
Figure 3.11: Sensor casing dimensional drawing. ... 9
Figure 5.1: Sample 3.3V boost converter circuit.12 ... 14
Figure 5.2: Typical charging circuit application.13 .. 14
Figure 5.3: Function prototypes and interrupt vectors for microcontroller code. .. 16
Figure 7.1: Gantt Chart. .. 25
Figure 8.1: Labor Costs vs. Time Graph. ... 25
Figure 15.1: Headset mechanical drawing. ... 33
Figure 15.2: Headset lid mechanical drawing. .. 33
Figure 15.3: Headset attachment 3D rendering. ... 33
Figure 15.4: Cane attachment mechanical drawing. ... 34
Figure 15.5: Cane attachment lid mechanical drawing. ... 34
Figure 15.6: Cane attachment lid mechanical drawing. ... 34
Figure 15.7: Sensor casing mechanical drawing. .. 34
Figure 15.8: Sensor casing 3D rendering. .. 34
Figure 15.9: Cane attachment 3D rendering. ... 35
Figure 15.10: Headset/cane attachment execution flowchart. ... 36
Figure 15.11: Execution flowchart for Bluetooth module. .. 37
Figure 15.12: Data processing algorithm execution flowchart. .. 38
Figure 15.13: Text-to-speech notification generator module execution flowchart. 39
Figure 15.14: Full Gantt chart (Part 1). .. 40
Figure 15.15: Full Gantt chart (Part 2). .. 40
Figure 15.16: Full Gantt chart (Part 3). .. 41
Figure 15.17: Timeline with milestones from Gantt chart in Microsoft Project. .. 41
Figure 15.18: Schematic for headset and cane attachment sub-systems. ... 45
Figure 15.19: Printed Circuit Board layout. ... 47
Figure 15.20: PCB 3D rendering. .. 48
Figure 15.21: PCB outer dimensions. .. 49
Figure 15.22: PCB drill hole dimensions. .. 50
Figure 15.23: Entire PCB system dimensions. ... 51
Figure 15.24: On/off switch location dimensions. ... 52
Figure 15.25: Printed PCB top rendering. ... 53
Figure 15.26: Printed PCB bottom rendering. ... 54
Figure 15.27: Final soldered headset circuit.. 55
Figure 15.28: Entire circuit with battery and ultrasonic sensor. ... 56
Figure 15.29: Prototype headset prior to housing addition. .. 56
Figure 15.30: 3D-printed headset housing. .. 57
Figure 15.31: 3D-printed headset housing interior. ... 57
Figure 15.32: Battery fitted into headset housing. .. 57
Figure 15.33: Circuit fitted into headset housing. .. 57
Figure 15.34: Mini USB connection for charging. ... 57
Figure 15.35: 3D-printed cane attachment housing. ... 58
Figure 15.36: Cane attachment housing inside. .. 58

 - vi -

Figure 15.37: Assembled headset housing with lid. .. 58
Figure 15.38: Assembled cane attachment housing with lids.. 59
Figure 15.39: Ultrasonic rangefinder characteristic curve. ... 60
Figure 15.40: Accelerometer y-axis output characteristic curve. .. 60
Figure 15.41: ATtiny1634 Active Supply Current vs. Frequency (1-12MHz) ... 61
Figure 15.42: AVR source code for headset sub-system microcontroller. .. 64
Figure 15.43: Preliminary data processing algorithm coded in MATLAB. .. 66
Figure 15.44: Data processing algorithm initial Java implementation. ... 68
Figure 15.45: Changes made to Bluetooth Chat example. ... 69

List of Equations
Equation 1: Calculation for desired response time. ... 7
Equation 2: Calculation for minimum battery capacity. ... 8
Equation 3: Calculation for cane attachment volume. ... 8
Equation 4: Calculation for headset attachment volume. .. 9

List of Tables
Table 3.1: Sub-system inputs and outputs. .. 7
Table 9.1: Cost of prototype parts. ... 26
Table 9.2: Labor hours and salary for each role needed for prototype. .. 26
Table 9.3: Estimated cost of production of device per unit. ... 27
Table 15.1: Total labor costs spreadsheet for Labor Costs vs. Time Graph. ... 42
Table 15.2: Module Matrix. ... 44
Table 15.3: Bill of Materials (BOM). .. 46

List of Datasheets
Datasheet 1: ATtiny1634 Datasheet .. 70
Datasheet 2: 3.7V 1000mAh Li-Po Battery Datasheet .. 72
Datasheet 3: Ultrasonic Sensor Datasheet .. 74
Datasheet 4: 4MHz Crystal Oscillator Datasheet .. 76
Datasheet 5: HC-05 Bluetooth Transceiver Datasheet ... 77
Datasheet 6: Inverter Datasheet ... 78
Datasheet 7: MMA7361 Accelerometer Datasheet .. 80
Datasheet 8: SMD Accelerometer Soldering Guide .. 82
Datasheet 9: Operational Amplifier Datasheet ... 85
Datasheet 10: SMD Right Angle Switch Datasheet ... 87
Datasheet 11: Sparkfun PowerCell Quickstart Guide ... 88
Datasheet 12: Sparkfun PowerCell Schematic ... 89
Datasheet 13: 0.1µF Capacitor Datasheet ... 90
Datasheet 14: 3.3nF Capacitor Datasheet ... 91
Datasheet 15: 20pF Capacitor Datasheet .. 92
Datasheet 16: 10kΩ Datasheet .. 93
Datasheet 17: 10MΩ Datasheet ... 94

- 1 -

1. Introduction

1.1. Background
Vision is the ability to interpret the surrounding environment by processing

information that is contained in visible light. Loss of vision, or blindness, can be caused
by a variety of physiological or neurological factors such as cataracts, glaucoma, age-
related macular degeneration, childhood blindness, and many other causes. The World
Health Organization (WHO) estimates that 285 million people worldwide are visually
impaired, 39 million of which are completely blind.1 Cures, treatments, and medical
devices to deal with blindness have been evolving through the years, resulting in
Braille, retinal implants and transplants, and specialized walking canes. Yet, for the
permanently blind, the range of options is very limited. Most employ the use of aids
such as nurses and seeing-eye dogs in addition to walking canes, but new research is
striving toward integration between the brain and optical devices. For example,
researchers James Weiland and Mark Humayun are working to develop artificial retinal
technology, which consists of microelectrodes implanted within the eye that receive
Laser or RF transmitted from a camera that then activates neural cells.2 The proposed
Collision Avoidance System would allow a blind individual to navigate their
environment with relative ease by alerting them to obstacles in their immediate
pathway.

The main purpose of the system is to automatically measure the distances of objects

within a predefined range, process this information through an Android™ cellular
device, and then relay the information to the user in feet and inches. The device will
consist of a headset containing sensors that will be able to detect objects at head-level
of the user. Additionally, a walking cane attachment will be designed to detect ground-
level obstacles. This attachment will contain sensors in combination with an
accelerometer to gauge the distance of objects in front of the user. All information is
communicated wirelessly using Bluetooth between the external devices and the
smartphone, which then relays this information as spoken audio alerts. The figure
below shows an example of a walking cane for the visually impaired as well as a basic
illustration of the system.

Figure 1.1: Example of walking cane and basic system implementation.3

- 2 -

1.2. Market Justification
Census data collected nationwide in 2011 found that around 7 million people in the

United States have some type of serious visual disability. Furthermore, of the 7 million
individuals suffering from serious visual disabilities that are also between the ages of
21 to 64, only 23.8% of these individuals are employed full-time.4 The total economic
impact of vision loss in the United States is estimated at nearly $68 billion annually.5
The market for assistive technology for those with visual impairments is vast.

The consumer market for the visually impaired is filled with a wide range of

products that claim to provide major advantages to the daily lives of the visually
impaired. Such products include laser guided canes, sonic devices, and GPS guidance
systems. A device similar to the proposed system is iGlasses™ by AmbuTech Inc., which
is an independent pair of glasses that detect objects in front of the user’s head.6 The
device alerts users by vibration in the glasses to objects within its 3 meter range and
has a max battery life of 10 hours of continuous use. This system retails at $96.10,
while the proposed system would retail at roughly $664, however, with much more
functionality.

The proposed Collision Avoidance System goes beyond this in that it detects

obstacles on the ground as well and would have much longer battery life. In addition,
the interface with an Android cellular device will allow for the system to output audio
feedback regarding objects in terms of distance from the user. Due to the number of
blind individuals in the United States as well the many unique qualities of this system in
comparison to competitive products, the proposed Collision Avoidance System is a
marketable product.

- 3 -

2. Overall System Requirements and Specifications

2.1. Overall System Requirements
 The system should assist in avoiding collisions while a user walks
 The system should detect obstacles at ground-level in the user’s path
 The system should detect obstacles at head-level in the user’s path
 The phone application should run on a smartphone using the Android platform
 Both peripheral devices should be powered by separate rechargeable batteries

o Batteries should last the user an entire day
 Both peripheral devices should be able to be turned on and off
 Both peripheral devices should wirelessly communicate with the smartphone
 Both peripheral devices should be small and light enough so as not to impede

normal motion
 The system should give the user spoken audio alerts and notifications

o Should alert user to obstacles on the ground with distance to the object
o Should alert user to head-level obstacles with distance to the object
o Should alert user once an obstacle is gone and their path is clear
o Should alert user when the cane is improperly oriented
o Should alert user when the battery in either peripheral device is low
o Obstacle alerts should be triggered in time for the user to react

 The system should be designed to conform to engineering standards pertaining
to telecommunications and information exchange between systems

 The system should be designed to conform to engineering standards pertaining
to SOIC package specifications

 The system should be designed to conform to engineering standards pertaining
to Micro Universal Serial Bus specifications

 The system should be designed to conform to engineering standards pertaining
to terms, definitions, and letter symbols for microelectronic devices

- 4 -

2.2. Overall System Specifications
 Horizontal object detection: ±20˚; Vertical object detection: ±10˚
 Ground-level obstacle detection range: 0-7ft ± 0.5ft
 Head-level obstacle detection range: 0-5ft ± 1in
 Smartphone Application Compatibility: Android 4.2
 Peripheral devices will be powered by independent, rechargeable batteries

o 3.7V 1000mAh Li-Ion rechargeable battery
o Batteries will be recharged via standard micro-B USB connector
o Use time per full charge: > 24 hours

 Will have physical switches on both peripheral devices to turn them on and off
 Peripheral devices will use Bluetooth 2.1
 Headset Weight: < 10oz; Form factor: glasses with < 5in3 housing for circuitry
 Cane Attachment Weight: <10oz; Size: < 6in3
 The system will give the user audio alerts and notifications

o Will alert user to ground-level objects with “Ground object X feet ahead”
audio output and “Ground Clear” once the path is clear

o Will alert user to head-level obstacles with “Head obstacle X feet ahead”
audio output and “Head Clear” once the path is clear

o Will alert user with “Rotate cane clockwise or counter-clockwise” audio
output

o Will alert user “Headset or Cane, battery low” when battery is below 20%
o Response time: < 100ms

 The system will be designed to conform to engineering standard IEEE
802.15.1™-2005 13 Security17

 The system will be designed to conform to engineering standard MS-013 from
JEDEC Solid State Product Outlines18

 The system will be designed to conform to engineering standard Universal Serial
Bus 3.1 Specification, Revision 1.019

 The system will be designed to conform to engineering standard JESD99C Terms,
Definitions and Letter Symbols for Microelectronic Devices20

- 5 -

3. Approach to Overall Design

3.1. Current Design
The Collision Avoidance System receives information about the user’s immediate

environment including both head-level and ground-level obstacles in front of the user
and provides audio alerts for the user when a collision is possible.

Figure 3.1: Context Diagram of entire system.

To satisfy the requirements of the project, it is necessary to have multiple sub-
systems capable of interacting and performing the various required tasks. There must
be sensors capable of detecting oncoming obstacles, sensors to determine the
orientation of the user’s head and cane, microcontrollers to interpret the data from the
sensors, a smartphone capable of integrating multiple peripheral devices and
generating audio alerts, and a means of communication between all sub-systems of the
design.

Because the system must protect against obstacles not only at head-level but also on

the ground, two sub-systems have been designed to accomplish this task. The first is a
glasses-like headset and the second is a small attachment mounted towards the bottom
of a user’s walking cane. Initially, only a single, head-mounted device was envisioned;
however, as the design evolved, it was decided that a secondary sub-system attached to
the user’s cane would best meet the requirements of the design and provide significant
additional value to the user. Keeping the headset as light and small as possible is
important to the overall design, so splitting off the ground-level obstacle sensing to a
separate sub-system made the most practical sense.

Figure 3.2: Data Flow Diagram showing individual sub-systems.

In order to sense the distance to upcoming obstacles, a set of sensors must be used.
For this system, ultrasonic sensors were chosen for their accuracy at both short and
long ranges as well as their relatively compact size.

- 6 -

In addition, accelerometers will be used to determine the orientation of both the
user’s head and cane. Accelerometers are capable of sensing acceleration, including the
constant acceleration due to gravity (g=9.81m/s2). By measuring the change in g’s on a
specific axis, it is possible to determine the angle at which the accelerometer is oriented
with respect to a predefined zero point. This is beneficial for the headset because it is
necessary to ignore irrelevant objects that may be detected by the ultrasonic sensor
that are not actually in the user’s path. For instance, if the user looks up, the system
should not mistakenly think that the ceiling is an obstacle in the user’s path. Similarly,
an accelerometer will be useful on the cane attachment to ensure that the user always
keeps the device properly oriented on top of the cane, facing forward.

Once the sensors detect objects, a microcontroller must be used to interpret and

process the data. The microcontroller will receive input from the sensors and generate
an output that can be sent to the next module within each sub-system. Microcontrollers
act as a central hub capable of controlling both the ultrasonic sensors and the
accelerometers simultaneously, then transmitting data to a Bluetooth transceiver.

Figure 3.3: Data Flow Diagram for both Headset & Cane Attachment sub-systems.

Transmission of data between the two peripheral sub-systems and the smartphone
needs to be both reliable and done without hindering the overall product. For this
reason, it was determined that the devices would be wireless and communicate with
the phone using a common wireless technology such as Bluetooth.

Once the smartphone receives the data from the two peripheral sub-systems, it

must be programmed to interpret and use that data to generate audio alerts for the
user. The smartphone will utilize built-in functionality of the Android platform to
generate spoken alerts for the visually impaired user to notify them that there is an
obstacle at a given distance away. Limits such as how often alerts can be triggered will
be crucial in making the system not only functional but also practical to use.

Figure 3.4: Data Flow Diagram for Android application sub-system.

- 7 -

Together, these individual sub-systems and specific modules will be capable of
meeting the defined general requirements and specifications for the system. The
following tree diagram shows the breakdown of the overall system into sub-systems,
modules, and sub-modules. Note that the headset and cane attachment sub-systems
consist of identical modules and have only been represented once.

Sub-System Inputs Outputs

Headset Obstacle, Acceleration Serial Bluetooth Signal

Cane Attachment Obstacle, Acceleration Serial Bluetooth Signal

Android Application Serial Data from Peripherals Audio Alerts
Table 3.1: Sub-system inputs and outputs.

Figure 3.5: Tree Diagram of entire system.

3.2. Evolution of the Current Design
In designing the Collision Avoidance System for the visually impaired, certain

critical engineering challenges were encountered and needed to be solved. The most
critical specification for the system is that the response time will be less than 100ms,
which was found using Equation 1. If walking at 5ft/second7, this equates to notifying
the user within 0.5ft. This estimate is conservative in that average walking speed tends
to vary between 3-5ft/second.

Equation 1: Calculation for desired response time.

- 8 -

Another challenge that needed to be solved was the 24-hour operation requirement.
The proposed ultrasonic sensor, accelerometer, microcontroller, and Bluetooth
transceiver draw roughly 2mA8, 400µA9, 2mA10, and 30mA11, respectively, while
operating. The resulting overall current draw of about 35mA must be used to calculate
the necessary battery capacity as shown in Equation 2. The batteries for the peripheral
devices also need to be low voltage for the embedded components, yet fairly high
capacity to power the devices for 24 hours of continuous use.

Equation 2: Calculation for minimum battery capacity.

When it comes to designing the housing of both peripheral devices, materials such
as aluminum and plastic were considered for both their durability and lightweight
characteristics. For this project, the housing is made of 3D-printed plastic because it is
easy to have produced rapidly and at a low cost, while also being extremely lightweight.
Additionally, the housing for the cane attachment must be compact enough to sit on the
cane and must be designed to attach securely on the cane. A rubberized Velcro strap
will be attached to the housing to secure it to the user’s walking cane. Each housing has
two cutouts for the micro-B USB connector and an on/off switch. The headset housing
also has a small hole to allow for wires to go out to the ultrasonic sensor, which will be
mounted separately on the headset. Equation 3 shows a preliminary calculation for
the estimated size of the cane attachment housing.

Equation 3: Calculation for cane attachment volume.

Figure 3.6: Cane attachment 3D view.

Figure 3.7: Dimensional drawing of cane attachment.

Note: Units in inches for all dimensional drawings.

- 9 -

Figure 3.8: Headset housing 3D view.

Figure 3.9: Headset housing dimensional drawing.

Equation 4: Calculation for headset attachment volume.

One key technical challenge to overcome was designing the cane attachment so that
the ultrasonic sensor always faces forward parallel to the ground. One solution would
be to simply add more sensors so that at least one always points in the right direction;
however, this idea would fail to meet the size requirements for the device. The final
decision was to include a gimbal-based solution that allows the ultrasonic sensor to
rotate freely along a single axis. The gimbal itself will be made of miniature ball
bearings mounted inside the housing and the ultrasonic sensor will be modified to have
small pins that can fit into the ball bearings. These pins must be placed at the sensor’s
center of gravity so that while level, the sensor sits parallel to the ground.

Figure 3.10: Sensor casing 3D view.

Figure 3.11: Sensor casing dimensional drawing.

Additional dimensional drawings can be found in Appendix A: Mechanical

Drawings including full three-dimensional views and measurements for the various
housing components.

- 10 -

3.3. Applicable Standards If Commercialized

This project requires the use of Bluetooth technology for wireless transmission of
data between the cane attachment, headset, and the Android phone. This transmission
of data should protect user information and therefore must follow IEEE Standard
802.15.1™-2005 titled “13 Security”.17 This standard states: in order to provide usage
protection and information confidentiality, the system provides security measures both
at the application layer and the link layer. The primary concern is protection of user
information, which Bluetooth technology addresses by incorporating authentication
and encryption measures. Bluetooth technology incorporates four separate security
measures during its operation on any device: a device address, two secret keys, and a
pseudo-random number for each transaction. The address can only be obtained by the
user of the device or by an inquiry from another device. The two secret keys are taken
from the initialization process and are never revealed. The pseudo-random numbers
are used for different security functions but are always randomly generated and
therefore impossible to predict in advance. The devices must be manually paired
initially by the user, ensuring protection of the device address. The application on the
Android phone is coded to connect only to the two peripheral devices and nothing else,
and if these are not paired it will not connect, thus maintaining specificity and user
authentication.

This project requires the use of an SOIC microcontroller for controlling the

peripheral devices. For the purposes of this project, the SOIC chip must conform to the
standard outline MS-013 given by standard JEDEC Solid State Product Outlines.18 MS-
013 states the correct dimensions that a SOIC chip should follow as well as outlining
various design elements. The SOIC used for this project meets the standard outlined by
JEDEC, falling within the minimum and maximum range of specified dimensions.

This project requires the use of a Micro-B Universal Serial Bus for charging the

batteries of the headset and cane attachment. The Micro-B Universal Serial Bus must
conform to the specifications outlined in standard Universal Serial Bus 3.1 Specification,
Revision 1.0.19 Universal Serial Bus 3.1 Specification, Revision 1.0 states: a hub may
provide power to all its downstream ports all of the time to support applications such
as battery charging from a USB port. The Micro-B USB used for this project conforms to
this standard by providing continuous power to support battery charging of the headset
and cane attachments.

The project requires the use of microelectronic devices as components in the

circuits built for the headset and can attachments. For this reason, the discussion of
these microelectronic devices must conform to standard JESD99C Terms, Definitions
and Letter Symbols for Microelectronic Devices.20 JESD99C states: this standard will
prove to be a useful guide for users, manufacturers, educators, technical writers, and
others interested in the characterization, nomenclature, and classification of
microelectronic devices. This project conforms to standard JESD99C by utilizing the
correct nomenclature, symbols, and abbreviations outlined for use in schematics,
equations, and descriptions.

- 11 -

4. Module Level – Requirements and Specifications

4.1. Headset & Cane Attachment Sub-Systems
Requirements for All Modules:
 Must run at 3.3V

4.1.1. Printed Circuit Board
Requirements:
 Must fit within the housing
Specifications:
 PCB Dimensions: 1.32” x 2.41”

4.1.2. Battery & Power Management
Requirements:
 Must supply steady voltage and current from varying battery voltage
 Must allow for the onboard battery to be recharged
Specifications:
 3.7V 1000mAh Li-Ion battery
 Input voltage: 0.3V-5.5V
 Output voltage: 3.3V
 Max output current: 300mA
 Charge via micro-B USB connector

4.1.3. Ultrasonic Sensor
Requirements:
 Must be able to detect objects up to 7ft away with accuracy of 1in
 Must output data to the microcontroller
 Must deliver readings fast enough to stay within the desire response time
 Must have a well-defined, narrow detection range
Specifications:
 Operating voltage: 2.5-5.5V
 Range: 0-255in; Tolerance: 1in
 TTL serial output at 9600bps
 Reading rate: 20Hz
 Beam pattern8 shown in Appendix I: Datasheets

4.1.4. Accelerometer
Requirements:
 Must be able to determine the orientation of the device
 Must output data to the microcontroller
Specifications:
 Operating voltage: 2.2-3.6V
 Measuring range:  1.5g
 Measuring axes: 3 (x, y, z)
 Analog output between 0.8-2.4V9

- 12 -

4.1.5. Microcontroller
Requirements:
 Must receive data from the sensors and output data to the Bluetooth module
 Must send properly formatted data that can be interpreted in Android

application
Specifications:
 Operating voltage (VCC): 1.8-5.5V
 2 full duplex USARTs, 12 10-bit ADC channels10
 Output formats: “ HS %d\r HA %d\n” or “ GS %d\n GA %d\n”

o “HL\n” or “GL\n” when battery is below 20%

4.1.6. Bluetooth Transceiver
Requirements:
 Must receive data from the microcontroller, then transmit data to smartphone
Specifications:
 Operating Voltage: 3.3-5V
 Receives serial UART data and transmits via the Bluetooth antenna with

configurable baud rate11

4.2. Android Application Sub-System

4.2.1. Bluetooth Connection
Requirements:
 The application should automatically connect only to the headset and cane

attachment without prompting the user to manually connect
 Needs to receive serial data over the Bluetooth connection
 Should check if Bluetooth is enabled on user’s android phone
 Should scan for Bluetooth enabled devices
 Should get list of paired Bluetooth devices
 Should check if “headset” and/or “cane” are in acquired list of paired devices
 Should check if headset and/or cane are connected after initiating a connection

and after every audio alert
Specifications:
 Peripheral devices will use Bluetooth 2.1 wireless technology to communicate

with the smartphone
 Connection will use the Bluetooth SPP (Serial Port Profile)
 Will use getPairedDevices() function to acquire list of paired Bluetooth devices
 Will use startDiscovery()function to scan for Bluetooth devices within 10

meters
 Will use isEnabled()function to check if Bluetooth is enabled on phone
 Will use getName()function to check if headset/cane is in list of paired devices
 Will use connect()function to connect to the headset/cane attachments
 Will use isConnected()function to check if headset/cane are still connected

- 13 -

4.2.2. Data Processing (Algorithm)
Requirements:
 Must distinguish between headset/cane data, ultrasonic and accelerometer
 Must determine if objects are in users path at head-level and ground-level
 Must determine if user’s head is tilted up/down and/or if user’s cane is properly

oriented
 Must output formatted notifications to text-to-speech module
Specifications:
 Inputs taken from Bluetooth module will be parsed looking for input message

formats: “ HS %d \r HA %d\n”, “HL\n”; “ GS %d\r GA %d\n”, “GL\n”
 Will determine from data if head-level object is within 0-5ft range or ground-

level object is within 0-7ft range
 Will determine from accelerometer data if the headset is beyond 20˚ from level

and/or if the cane attachment is rotated more than 30˚
 Output notification formats: “Hx.x”, “Gx.x”, “CW”, “CCW”, “HC”, “GC”, “HL”, “GL”

4.2.3. Text-to-Speech Notification Generator
Requirements:
 Should alert the user to obstacles on the ground with distance to the object
 Should alert the user to head-level obstacles with distance to the object
 Should alert the user when the cane is improperly oriented
 Should alert the user once the path is clear after an obstacle was detected
 Should alert the user when battery in either of the peripheral devices is low
Specifications:
 Will alert user with “Enable Bluetooth” if Bluetooth is not enabled on phone
 Will alert user to ground-level objects with “Ground object X feet ahead” audio

output when a ground level obstacle is detected by the ultrasonic sensor
 Will alert user to head-level obstacles with “Head obstacle X feet ahead” audio

output when a head level obstacle is detected by the ultrasonic sensor
 Will alert user with “Head or Ground Clear” audio output if a head level or

ground level obstacle is no longer in the user’s path
 Will alert user with “Rotate cane left or right” when cane is improperly oriented
 Will alert user that “Headset or Cane, low battery” when battery is below 20%

- 14 -

5. Individual Module Design

5.1. Headset and Cane Attachment Sub-Systems
Both the headset and walking cane attachment are very similar in their operation.

They will both be described and broken down into modules here simultaneously
because each module applies to both devices. Figure 15.18 shows the final schematic
of the sub-system circuit.

5.1.1. Printed Circuit Board (PCB)
The circuitry for both peripheral devices must be soldered onto a single PCB

for each device. The PCBs will be simple 2-layer PCBs integrating all of the
necessary components for the devices to operate except the ultrasonic sensor and
battery. The PCBs must fit within the housings so they have been designed to match
the width of the battery at 1.32” x 2.14”. The boards must be laid out in such a way
that allows easy access to both the micro-B USB connector and the on/off switch.
The holes in the housing must then line up with the location of where those
components are placed. Appendix F: Board Fabrication Details shows the finished
PCB design and all components.

5.1.2. Battery & Power Management
The power management module of the devices includes the battery pack as

well as the circuitry necessary to both charge the battery and regulate the output to
3.3V. The 3.7V 1000mAh battery was conservatively chosen for its ability to power
the device well beyond the specified 24 hours. It can also be easily regulated to
3.3V. The PowerCell15 from Sparkfun was chosen as the best commercial option
that includes both the LiPo-battery charging and boost converter. The boost
converter circuit uses a low input voltage synchronous boost converter IC,
TPS61201DRC12, capable of taking inputs as low as 0.3V and maintaining a steady
3.3V output. It also has an undervoltage-lockout (UVLO) included to ensure that the
battery is never drained below 2.6V, to prevent battery damage. The battery output
is connected to one of the ADC ports of the microcontroller through a 10MΩ current-
limiting resistor while monitoring the battery voltage. When it goes below 2.82V, or
20% of the usable voltage range left, an alert must be sent out.

The charging of the battery is controlled by a dedicated lithium-polymer charge

management controller, MCP7383113. The datasheet provides a typical application
of the IC, shown below, that is used. The Vin comes directly from the micro-B USB
connector.

Figure 5.1: Sample 3.3V boost converter circuit.12

Figure 5.2: Typical charging circuit application.13

- 15 -

5.1.3. Ultrasonic Sensor
An ultrasonic rangefinder was chosen as the best solution for detecting

obstacles for a variety of reasons. This sensor operates by sending out ultrasonic
sound waves and calculating the distance to the nearest object by measuring the
time it takes to receive the wave back. The ultrasonic sensor is capable of meeting
the specified distances with a maximum range of 255in (21.25ft) and 1in accuracy.
It also operates from 2.5-5.5V, so it will be able to run on the desired low voltage
battery. Finally, ultrasonic sensors can commonly attain at least a 20Hz reading
rate,8 which equates to a new reading every 50ms. This will allow the system to
keep its response time below the specified 100ms.

The ultrasonic sensor has three types of output, RS232, analog, and PWM. The

digital RS232 serial output at 9600bps was used for its convenience when
interfacing with the microcontroller. An inverter was placed between the output
pin of the ultrasonic sensor and the input pin of the microcontroller to convert the
RS232 signal to standard TTL values.

It is also important to note that an IR sensor was considered for the headset

because it can sense objects up to 5ft away as well.14 After some testing, it was
determined that the ultrasonic sensor performed more accurately than the IR
sensor. Long-range IR sensors also require higher voltages, at least 4.5-5.5V,
making it a poor choice for a low-voltage embedded system.

5.1.4. Accelerometer
The accelerometer module will be responsible for determining the orientation

of the user’s head as well as the orientation of their walking cane. The
accelerometers will detect changes in the static gravity acting on the x, y, and z-axes
and output analog voltage signals. Only a single axis is used in this implementation
because it supplies enough information to determine whether a user’s head is tilted
up or down as well as the rotation of the walking cane. More elaborate packages
that include gyroscopes coupled with accelerometers were deemed unnecessary, as
the accelerometer alone was found to provide enough information.

The accelerometer outputs a linear analog voltage between 0.8-2.4V for –g to g,

which can be read by the microcontroller’s ADC channels. The accelerometer was
used as specified in its datasheet with a 3.3nF capacitor between the output and
ground. There is also a 0.1µF capacitor between VDD and ground. The sleep pin is
permanently pulled high through a 10kΩ resistor, which allows the accelerometer to
operate constantly. A current buffer was placed between the analog output of the
accelerometer and the input ADC pin of the microcontroller because the
accelerometer has a relatively high 32kΩ output impedance. The buffer ensures
that the value read by the microcontroller is accurate.

- 16 -

5.1.5. Microcontroller
Both devices require a central hub capable of processing the data coming from

the sensors and sending that data out to the Bluetooth transceiver. This particular
system will require low voltage microcontrollers to minimize the current draw and
keep battery life as long as possible. In addition, running the microcontroller at a
relatively low clock speed such as 4MHz as opposed to 12MHz will greatly reduce
the current draw of the microcontroller. Figure 15.41 shows the supply current
versus clock frequency at various voltages.

The microcontroller will be responsible for reading from the ultrasonic sensor

and accelerometer, interpreting the data, and formatting it to be sent to the
Bluetooth transceiver in such a way that can be easily understood in the Android
application. The data will be formatted in messages such as “ HS %d\r HA %d\n”, or
“HL\n”. The ‘H’ would change to a ‘G’ for the cane attachment. This corresponds to
headset sonar and ground sonar with a distance in inches and the accelerometer
axes with degrees. This is to ensure that the Android application knows which sub-
system the data corresponds to. The coding consists of three main parts: the main
loop, a serial receive interrupt, and an ADC complete interrupt. The main loop
constantly starts a new ADC conversion of the accelerometer output voltage, while
the interrupts trigger when there is new data from the ultrasonic sensor and when
the ADC completes. The full, commented, and annotated code can be found in
Appendix H: Source Code as well as an execution flowchart showing the logic of the
code in Appendix B: Software Flowchart.

void initialize(void);
void start_adc(void);
unsigned char decode_number(unsigned char x);
ISR(USART0_RX_vect)
ISR(ADC_vect)
ISR(TIMER1_OVF_vect)

Figure 5.3: Function prototypes and interrupt vectors for microcontroller code.

5.1.6. Bluetooth Transceiver
It was decided that both peripheral devices would need to be wirelessly

connected to the smartphone to make the system as easy as possible to use. A wired
connection between the smartphone and a device mounted to the end of a user’s
walking cane would be extremely cumbersome. In addition, having two devices
wired to a smartphone that generally has only a single port would be a difficult
challenge to overcome. A wireless solution was the only practical way of integrating
both devices with the smartphone. Bluetooth is the current predominant wireless
technology in embedded systems and will be used as the means of communication
between the peripheral devices and the smartphone.

5.1.7. Key Component Selection
The Power Cell LiPo Charger/Booster15 was chosen as the best option for

power management because it includes all of the necessary circuitry in a rather
concise package. The main PCB for the system is designed so that the PowerCell
PCB could be easily mounted on top of it.

- 17 -

The Maxbotix LV-MaxSonar-EZ38 ultrasonic rangefinder was chosen as the best
possible ultrasonic sensor for this system. For one, the LV series of sensors from
Maxbotix are low power devices, using only 2.0mA of average current as opposed to
3.4mA in their XL series. The LV-EZ3 also can also operate at up to 20Hz, whereas
the XL series maxes out at 10Hz. This will help keep the response time of the system
as small as possible. Within the LV series, the EZ3 sensor was chosen because its
narrow beam pattern and good side object rejection best met the desired 20-degree
horizontal detection range.

The MMA7361L9 triple axis accelerometer was chosen for a variety of reasons.

The output of this particular accelerometer is analog, which is generally accurate
and easy to interface with the microcontroller via the multiple analog to digital
conversion channels. The analog accelerometer also has an extremely low current
consumption of up to 400µA.

The ATtiny163410 microcontroller has been chosen for both peripheral devices.

First, the ATtiny series was looked at exclusively because they are much smaller
than AVR’s larger ATMEGA series. Keeping the devices as small as possible is crucial
to the overall design. The ATtiny1634 was chosen, in particular, because it is the
only ATtiny microcontroller with two full duplex USARTs. This will allow both the
ultrasonic sensor and Bluetooth transceiver to be directly connected to independent
USARTs.

Finally, an HC-05 Bluetooth transceiver module11 was chosen to handle the

Bluetooth communication. This specific Bluetooth transceiver is extremely low cost
and offers a great deal of functionality to the end user. Any Bluetooth transceiver
allowing serial RX/TX type data transmission would work in this instance.

5.2. Android Application Sub-System

5.2.1. Bluetooth Module
Bluetooth technology is used in this system for the purposes of transmitting

data from the headset and cane attachment to the Android application. Data is only
to be sent via Bluetooth to the application, not from it, and the application generates
alerts depending on the data received. Sending data over Bluetooth allows the
establishment of a connection not reliant upon an Internet source, making data
transmission more efficient than alternative methods.

The Bluetooth connection is executed first when the application starts. The

code starts with checking if Bluetooth is enabled on the user’s phone using the
isEnabled() function. This function returns “True” if Bluetooth is enabled on the
user’s phone, in which case it moves on the scan for Bluetooth devices within a 10
meter radius using the startDiscovery() function. If Bluetooth is not enabled on the
user’s phone, the application outputs an audio alert telling the user to enable
Bluetooth and again uses the isEnabled() function to check if Bluetooth is enabled.

- 18 -

After scanning for nearby Bluetooth devices, the code moves on to getting a list
of devices already paired with the phone using the function getPairedDevices().
From here the code checks if the headset is paired with the user’s phone using the
getName() function. If the “headset” is found in the list of paired devices then the
program moves on to connect the headset with the user’s phone using the connect()
function. If the headset is not paired with the user’s phone, the application outputs
an audio alert telling the user that the headset is not paired and then the code loops
back to the start of the program. After calling the function to connect the headset
and user’s phone, the code checks if the two are indeed connected by using the
isConnected() function. If the two are in fact connected the code moves on to
getting the list of paired devices again. If the two are not connected, the application
outputs an audio alert telling the user that the headset is not connected and then the
code loops back to the start of the program. After the application again gets a list of
paired devices, it then uses the getName() function to check if “cane” is in the
acquired list of paired devices. If the “cane” is not in the list of acquired paired
devices, the application outputs an audio alert telling the user that the cane is not
paired and the code then loops back to the start of the program. If the cane and the
user’s phone are paired, the code then calls the connect() function to start a
connection between the two devices. When a connected socket is returned, the code
then moves to check if the cane and user’s phone are in fact connected using the
isConnected() function. If they are not connected, the application outputs an audio
alert telling the user that the cane is not connected and then the code loops back to
the start of the program. The Bluetooth functionality available in this application is
heavily built around the sample provided by Google under the Android Open Source
Project, BluetoothChat example.21

5.2.2. Data Processing (Algorithm) Module
The algorithm controls the exclusively audio user interface. The algorithm

deals with objects’ distances, head and cane orientation, system design parameter
checks, and alert creation. The algorithm will take data received via Bluetooth
connectivity from peripheral devices as its input stream of data. Using this stream,
the algorithm will separate the pieces of data into sets of data in relation to each
peripheral device and the sensor to which they correspond. Each of the sensors on
the peripheral devices provides different feedback that becomes useful to the user.
Additionally, the algorithm handles conveying low battery information to the user if
either battery is below 20%.

Initially, the data stream is received by the Bluetooth module of the Android

device one character at a time (i.e. ‘H’ ‘S’ ‘0’), meaning, for example, that a set
characters beginning with ‘H’‘S’ or ‘G’‘S’ and ending with ‘\n’ is one unit of usable
information regarding distance. The algorithm distinguishes between the head and
ground-level from the first character (H or G). From this, the algorithm knows that
the next characters pertain to information regarding head-level or ground-level
attachments.

- 19 -

Separation into sensor types is done by looking at the second character, ‘S’ or
‘A’ or ‘L’, signifying that unit of information pertains to the sonar, accelerometer, or
battery, respectively. For the ultrasonic sensor, the next one to three characters
provides the numerical information in inches and the last character will be ‘\r’
signifying the completion of one set of useable information. Similarly, for the
accelerometer sensor, the first one to four characters after the ‘A’ provide the
numerical information in degrees about peripheral orientation and the last
character ‘\n’ is the end of the set. Once a unit of data containing both ultrasonic
sensor and accelerometer data is obtained, the unit is separated at its spaces into
four segments of data and stored in an ArrayList. Within the ArrayList, the distance
and angle can be found and converted from strings to numerical while also scaling
the distance to foot values. The numerical information from the ultrasonic sensors
and accelerometer sensors are run through a 10-point moving average as new
information is received.

After the 10-point moving averaging is complete, the system parameter checks

are initialized, starting with the accelerometer section. If the head angle is between
±20°, the algorithm will proceed to checking the headset distance value. Similarly, if
the cane orientation is between ±30°, it will proceed to checking the ground
distance value. For both, if outside the degree range, the distance value will not be
checked so no obstacle alert can be triggered. However, there will be an output to
rotate the cane either clockwise or counter-clockwise. If either degree value is
within the desired bounds, the algorithm will check if the corresponding distance
value is in the alert range for the headset (0-5ft) or cane attachment (0-7ft).

If these conditions are met, a distance message is created and passed to the

text-to-speech module for each peripheral device. The algorithm will only re-alert
the user once the obstacle is half a foot closer. Additionally, all alerts will be given in
a sequential order as they are received. At the initialization of the algorithm, “clear”
variables called CLEARH and CLEARG are set to true. Once an alert at either
peripheral device is created, the respective “clear” variable is set to false. In the next
iteration, if the object is out of the device range, then the respective “clear” variable
is set to true and a CLEAR message is created.

In terms of the battery, once the algorithm reads ‘L’ after the first character it

creates a battery low power message for the specific peripheral device, while also
looking for the ‘n\’ character to know that the unit of data is finished.

A completely detailed execution flowchart for this algorithm can be found in

Appendix B: Software Flowcharts.

- 20 -

5.2.3. Text-to-Speech Notification Generator
This module utilizes built-in functionality16 of the Android operating system

and Android SDK to convert text notifications into spoken audio alerts for the user
of the system. The module needs to receive the desired notification from the data
processing module, convert it to speech, and output the alert to the user. Since the
user of this application is visually impaired, the only practical way of notifying them
is an audio alert. A simple vibration would have sufficed had our application only
needed one notification but for the amount of information we provide, audio alerts
are necessary.

The text-to-speech generator represents the third major module of the Android

application after the Bluetooth connection module and the data processing module.
The text-to-speech generator receives a formatted message from the data
processing module and then through a series of decisions generates an audio alert
to notify the user. There will only be a distance alert when there is at least half a
foot of change reported by the sensors at either head or ground level. The text-to-
speech generator is also set up so that a new message will not be spoken while it is
already speaking something. Therefore, it will never be interrupted mid-alert.
Another important change that was made to the text-to-speech built into the
Android SDK was to speed up what was being said as well as reducing the overall
number of words to be spoken. These messages happen in real time and are
constantly generated by this module whenever an alert is necessary.

Sample alerts include collision alerts at the head and ground level to assist the

user in avoiding those obstacles. Another alert will be is necessary to have the user
turn the cane left or right based on the current orientation of the cane attachment.
Based on the values returned by the accelerometer, a decision can be made as to the
orientation of the cane attachment and how it must be rotated to ensure it is
properly oriented. Also, an alert is included to notify the use when both the head
area and ground are clear of obstacles. This alert is spoken after an obstacle was
already detected to notify the user that they have found an open area to continue
moving forward. Finally, a low battery alert is included for both the headset and
cane attachment when the battery’s voltage drops below 20%.

A completely detailed execution flowchart for this module can be found in

Appendix B: Software Flowcharts.

- 21 -

6. Module and System Tests

6.1. Overall System
In terms of the overall system, the Collision Avoidance System must meet multiple

criteria before the team can be fully satisfied with the product. These tests for the
overall system will correlate to the detection of obstacles at various distances, the
effectiveness of ignoring non-relevant objects (i.e. ceiling), response time for various
gaits, working angle boundaries, and finally the 24-hour use time of the system.

To test detection of obstacles at various distances, the system will be placed over

10ft away from a wall, then incrementally moved closer to verify that the object will
only be detected when it is within the specified 7ft range at ground-level and 5ft range
at head-level. This will prove the system’s viability for large, solid objects. In similar
tests, either a broom handle (emulating a small branch) will be placed at head level,
10ft in front of the user, or a 1ft tall box will be placed at ground-level 10ft in front of
the user. Distances will be marked off to ensure the system outputs the proper distance
to within 0.5ft.

Another necessary test is determining the angle boundaries of the sensors and the

system’s ability to ignore objects above the user’s head. For this test, the headset will
be placed next to a protractor to determine the angle at which notifications cut off. The
device will be slowly tilted back and any solid object will be moved in and out of its field
of view. The test will be successful if there are no notifications after being tilted 20° in
either direction. A similar test can be performed for the cane attachment, only this time
rotating it past 30° in either direction. A test will also be performed where a solid
object is moved in from the sides of the user to determine the angle at which it is first
detected as an obstacle. For success, this value should be 10°.

Response time will be tested by dropping a solid object in front of either sensor and

starting a timer at the same time. No more than 100ms should pass between the object
entering in front of the system and the start of the audio alert. Another way of testing
this would be to insert timestamps for testing purposes on specific alerts to compare
the time between when an obstacle is detected and when the notification is triggered.

Finally, testing the 24-hour power range will be done by leaving the system on for

24 hours. Then, if the peripheral devices are still running, the test would be continued
to see how long the battery will last during continuous use.

- 22 -

6.2. Key Modules
Level 1 Testing:

In terms of the level 1 testing of the complete sub-systems that comprise the
Collision Avoidance System, the main goal would be the integration of each module
within the sub-system. The peripheral devices will be tested individually prior to
integration with the Android application. For the sub-system tests, the headset and
cane attachment must show that they can output distance, degree, and battery alerts to
the Android application. Because a connection has already been shown to work
between the devices and a laptop computer, they can be connected again to show that
the devices are outputting data in the format specified above. If each device outputs
distance and degree information as well as battery alerts when the battery is low, the
test will be successful.

In terms of the Android phone, at this level the phone must be able to receive data

from two different Bluetooth connections simultaneously. This functionality can be
tested as it was in the prototype demonstration by connecting to two additional phones.
To test this, not only would two different connections need to be established, but the
phone would also need to show two separate sets of raw data coming from the two
sources.

Level 2 Testing:

With relation to level 2 testing, components that will be examined are the individual
modules that make up each sub-system: the sensors, power management, Bluetooth
transceiver, Bluetooth connection, data processing algorithm, and the text-to-speech-
notification generator.

Testing the sensors will consist of multiple steps. The devices will need to be

reprogrammed with specific code to test the modules and create a connection capable
of outputting results. In terms of the ultrasonic sensor, verifying that the distances
reported by the sensor match the actual values will be accomplished by measuring a
solid object at various distances between 0-7ft using a measuring tape as reference.
Similarly, testing the accelerometer can be achieved by using a protractor as reference,
which will allow the displayed measurements of degrees from the zero point of each
axis to be compared with real world values. These tests were actually already
performed and the results can be found in

The power management circuitry will be tested by simply connecting a low input

voltage of 1V and measuring the output voltage to ensure that the boost converter is
working and outputting 3.3V. The charging circuit will be tested by attaching a slightly
drained Li-Ion battery, which is initially at 3V. The battery will be left to charge for an
hour, then tested again to see that they voltage has risen.

- 23 -

Additionally, tests must be run to verify that data from the microcontroller can be
transmitted wirelessly over Bluetooth. To test such a Bluetooth module, predefined
data such as a simple message “Hello” will be transmitted to a laptop and read to ensure
what is sent is the same as what is received.

Testing the algorithm will be done using “fake” data sets simulating various

scenarios such as normal walking towards an object, a car passing through the user’s
path (testing a quick object motion), a person passing through the user’s path (a slow
object motion), objects moving in/out of user’s path, etc. These “fake” data sets will be
created by using a conservative estimate for walking speeds of 3ft/s to 5ft/s. The
premise of all the “fake” data sets is to change distance values from outside of the
working ranges to within the working ranges abruptly. The data processing algorithm
will realize that objects become relevant, and then determine after the moving average
if the objects have a chance of colliding with the user. Not all objects that become
relevant will necessarily collide with the user. For example, if a car quickly passes
across the user’s path, the ultrasonic sensors would pick up information about the
object in the millisecond range. Readings that last for a few milliseconds would be
smoothed out by the moving average resulting in the algorithm not notifying the user.
This situation can be accurate because the car would be out of the user’s path before the
user is in a range for collision. On the other hand, if a person is passing through the
user’s path or walks in the user’s path, the ultrasonic sensors pick up information about
the person for a longer time period (in the seconds range). As a result, the algorithm’s
moving average will provide numerous values concerning the person that the
parameter checks can use to create alerts. The other scenarios will work in the same
similar way, where if reading concerning an object last a significant time interval (in the
seconds range) alerts will be created, but if the readings last a short interval and/or if
the readings are not changing the moving average will not allow for alerts to be created.

To test that the algorithm will simulate a streaming of data character by character,

the various scenarios will be created as data points concatenated together as strings
within files. The algorithm will then go into each specific scenario file and read through
the string character by character separating them by peripheral device and sensor
types, and then convert strings to numbers where necessary. When one unit of useable
data is received, the algorithm will do the aforementioned processes of averaging,
parameter checking, and alert creating. The outputs of the algorithm will be alert
messages in the format of “Hx.x”, “Gx.x”, “CW”, “CCW”, “HC”, “GC”, “HL”, or “GL”
concerning various situations of objects within ranges, object passing out of ranges,
incorrect cane rotations, and battery power.

The first step to test both the Bluetooth module and the text-to-speech generator is

to obtain two other devices besides the main Android phone that work via Bluetooth
serial port profile. The application can then be run on the main phone after which it
will tell the user that Bluetooth is not enabled on the phone. After enabling Bluetooth
on the user’s phone, the application can be run again in which case an audio alert
should be generated telling the user that the phone is not paired with “headset” or
“cane.” Once this occurs, Bluetooth on the two peripheral devices need to be manually

- 24 -

turned on and the name of one device should be changed to “headset” while the other
should be changed to “cane.” After this, the program should be run again and the code
should recognize the two peripheral devices and try to connect to each separately. If in
this process a connection has failed, the user will be notified via an audio alert. If the
connection is successful, the code should jump to receive data from the two peripheral
devices and translate this data into an audio alert. From the device named “head,” if a
text is sent over Bluetooth to the main phone reading “H4”, the main phone should
generate an audio alert in the form of “Head level obstacle 4 feet away”. From the
device named ground, if a text is sent over Bluetooth to the main phone reading “G5”,
the main phone should generate an audio alert in the form of “Ground level alert 5 feet
away”. This series of tasks tests all functionalities of two modules in the Android
application and will prove that they are functioning correctly. The Bluetooth
connection test sees if a Bluetooth connection can be initiated and maintained between
the user’s phone and two peripheral devices without any manual connection from the
user. The text-to-speech test sees if the main phone can generate specific audio alerts
from data sent over Bluetooth of two peripheral devices.

- 25 -

7. Timeline Estimation and Milestones

Figure 7.1: Gantt Chart.

 The Gantt chart includes all major assignments, design decisions, and individual
project tasks from the inception of the project idea to the projected completion of the
device. The timeline starts in January 2013 and ends May 2014. The majority of the
milestones include major deliverables (PDR, PoP, Prototype Demos, CDR, FDR, etc.). The
full Gantt chart with all tasks and details can be found in Appendix C: Gantt Chart.

8. Labor Costs Graph

Figure 8.1: Labor Costs vs. Time Graph.

 The labor costs vs. time graph includes an estimate of the labor required starting at
the beginning of ECE3915 and estimates all the way until the end of ECE4925. The time
span includes actual work weeks and excludes any vacation or interruption in the process
of completing the project. The raw data used to estimate the overall labor costs is included
in Appendix D: Economic Analysis Data.

$0.00

$5,000.00

$10,000.00

$15,000.00

$20,000.00

$25,000.00

0 10 20 30 40 50

T
o

ta
l

L
a

b
o

r
C

o
st

s

Time (Weeks)

Labor Costs vs. Time

Actual
Past
Labor
Costs

Projected
Future
Labor
Costs

- 26 -

9. Economic Analysis
Part Individual Cost Total
(2) Ultrasonic Rangefinder – Maxbotix LV-EZ3 $27.95 $55.90
(2) Triple Axis Accelerometer Breakout Board – MMA7361 $11.95 $23.90
(2) HC-05 Bluetooth Transceiver Breakout Board $9.28 $18.56
(2) ATtiny1634 Microcontroller $1.72 $3.44
(2) 4MHz Crystal Oscillators $0.46 $0.92
(2) SOIC to DIP Adapter 20-Pin $3.95 $7.90
(2) 40-Pin Breakaway Headers $1.50 $3.00
40-Pin Right Angle Headers $1.95 $1.95
(1) AVRISP mkII $36.59 $36.59
Total Cost $152.16

Table 9.1: Cost of prototype parts.

The cost of each part for the prototype is outlined in the table above. The total for
all parts of the prototype is $152.16. Adding in a 5% pass-through, the total for all parts of
the prototype comes to $159.77.

Role Hours Salary
Project Manager 100 $66/hr
Design Engineer 32 $57/hr
Hardware Engineer 99 $48/hr
Software Engineer 141 $40/hr
Test Engineer 28 $36/hr
Technical Writer 93 $30/hr
Total 493 $22,614

Table 9.2: Labor hours and salary for each role needed for prototype.

The hours each member of the project team must contribute towards the prototype
and the salary they will receive for doing so is listed in the table above. The hours for each
role were derived from the labor costs vs. time graph by totaling the labor cost per role per
week and dividing by that specific role’s salary. The total hours needed to complete the
prototype are 493 and the total labor costs are $22,614. After multiplying our total labor
costs by a factor of 2.8 to convert our total salary costs to contract charges, the total labor
cost is $63,319.20. Adding in the cost of prototype parts our total cost to build the
prototype is $63,478.97.

- 27 -

In order for our prototype to be produced and sold, costs for the production of the
device per unit must be calculated. These calculations explained in detail below.

Part Individual Cost Total
(2) ATtiny1634 8-bit microcontroller $1.00 $2.00
(2) 3.7V LiPo-Ion battery - 1000mAh $11.95 $23.90
(2) Maxbotix LV-MaxSonar-EZ3 $22.36 $44.72
(2) Three-axis low-g accelerometer (MMA7361L) $6.36 $12.72
(2) HC-05 Bluetooth transceiver $9.28 $18.56
(2) PowerCell Li-Po charger/booster $15.96 $31.92
(2) Surface mount right-angle switch $0.76 $1.52
(2) Single Schmitt-Trigger inverter $0.103 $0.206
(2) 4MHz crystal oscillator $0.21 $0.42
(2) Low voltage operational amplifier $0.559 $1.118
(4) 20pF capacitor $0.16 $0.64
(2) 3.3nF capacitor $0.012 $0.024
(2) 0.1uF capacitor $0.004 $0.008
(2) 10kΩ resistor $0.09 $0.18
(2) 10MΩ resistor $0.07 $0.14
(2) Printed Circuit Board $7.95 $15.90
(2) Mini ball bearing $1.52 $3.04
(12) PCB mounting screws $0.10 $1.20
Total Cost $158.22

Table 9.3: Estimated cost of production of device per unit.

The cost to price per unit of the produced device will be $158.22. The number of
units likely to be sold is estimated to be 1000 units. For these 1000 units, the cost of
production not including labor would be $158,220.00. The packaging cost for this device is
estimated at $5.00 per unit sold so 1000 units would result in a total packaging cost of
$5000.00. The total non-labor production cost for 1000 units is $163,220.00.

It is estimated that manufacturing verification will take approximately 200 hours, at

a rate of $20/hr, which will result in a total of $4000.00 for the manufacturing process
development and verification. For software verification, it is estimated that 350 hours will
be needed, at a rate of $15/hr, which will result in a total of $5250.00 for software testing.
The manufacturing verification and the software verification added together equal the
production cost for labor, which is a total of $9250.00. Adding in a multiplier of 2.0 for
indirect costs $9250.00 becomes $18,500.00.

The total cost for production includes the non-labor costs and the labor costs, which

total to $181,720.00. After adding in overhead costs of 40% and a profit fee of 20%, the
total cost for production becomes $181,720x1.4x1.2=$305,289.60. This costs expressed in
term of per unit becomes $305,289.60/1000=$305.29.

- 28 -

The estimation for the total cost of the project is the cost of the prototype
($63,478.97) and the cost of production for 1000 units ($305,289.60) added together
which equals $368,768.57. The total cost of the project in dollars per unit is
$368,768.57/1000, which equals $368.7/unit.

To estimate the cost of distribution, first 20% must be added to calculate the

wholesale price per unit: $368.77/unit x 1.2=$442.52/unit. Next, 50% must be added to
calculate the retail price per unit: $442.52x1.5=$663.78/unit. The price is the final
estimated retail price of our device is $663.78/unit.

- 29 -

10. Summary and Conclusions
Initially, the scope of the project was focused toward creating a facial recognition

system for a security system of a house. A shift in direction for the project was
implemented once it was realized that creation of a facial recognition algorithm was not an
achievable goal in the timeframe and that use of a preexisting algorithm would result in the
project being too simplistic. The scope of the project was directed toward creating an
assistive device for the blind that would provide the user with information regarding facial
recognition, currency, GPS, and object alerts. Again, through various design and achievable
goal discussions, the project was slimmed down to be a collision avoidance system for the
visually impaired focusing on using two peripheral devices and a phone to provide a user
with information about objects in their walking path.

The data processing algorithm has been tested to ensure that it is capable of handling

the necessary data and generating the specified results. Some progress has been made in
getting simultaneous Bluetooth connections between an Android phone and peripheral
devices; however, this has been the most difficult task so far in the project. The PCBs have
been printed, populated, and tested to ensure that they are functioning as expected. The
readings from the sensors match the preliminary data that was found in the prototype
stage. Major progress has been made on the housings for both devices. Preliminary
devices were 3D printed and have proven to be durable and lightweight, as expected.
Refined versions were printed on a higher quality 3D printer and will be used in the final
iteration of the system. The gimbal design for the cane attachment has also advanced with
the use of mini ball bearings to ensure the sensor swings freely.

To this point, the group has been successful in implementing hardware prototypes that

will eventually become the final device. Additionally, the sub-systems to be implemented
for the final product were tested and finalized. The Bluetooth module has been the most
challenging portion of the project to come together, and to this point, only one Bluetooth
device can be connected to the device at a time while streaming data. With one device, the
connecting portion of the integration process has begun, starting with creating a usable
unit of data from a peripheral device and moving on to processing the portion of the data.
Challenges faced through the preliminary integration stages include parsing the stream to a
usable unit, clearing and overwriting the unit, speed of the acquisition of the data stream,
and repetitive alert messages.

With patience and persistence many of the problems including parsing to usable units,

clearing and overwriting the unit, and speed of acquisition have been solved and the
repetitive messages are on their way to being solved. Moving forward, more time and
effort will be spent on fixing the repetitive messages, but more importantly, the team must
focus on establishing simultaneous connections to two peripheral devices via Bluetooth.

- 30 -

11. Qualifications of Key Personnel

11.1. Brandon Bernier
Brandon Bernier is a computer engineering major that has extensive coding

knowledge and a great deal of experience with the C programming language as well as
the design of both analog and digital circuitry. Brandon has taken multiple
programming classes in C, in particular AVR based C coding, including Intro to C, Data
Structures, and Operating Systems. More importantly, he has taken Intro to
Microprocessors and Embedded Systems, which are based around Atmel’s 8-bit AVR
microcontrollers. In addition to knowledge of microcontrollers, Brandon is also very
familiar with circuit design from Circuit Theory; Engineering Electronics; Digital
Electronics and Design; and Design of Logic Systems I and II. These classes have given
him a strong background in both high and low-level system design and a technical
perspective with which he can approach this project.

11.2. Srinivas Tapa
Srinivas Tapa is a biomedical engineering major that has significant coding

experience in C and MATLAB as well as being well qualified to design, simulate, and
implement both analog and digital circuitry. Srinivas has taken multiple courses that in
C such as Intro to C Programming and Data Structures. Additionally, Srinivas has a
working knowledge of analog and digital circuitry from courses taken such as Circuit
Theory; Engineering Electronics; Circuits, Signals, and Systems; and Design of Logic
Systems I. Srinivas has also taken a course entitled Rehabilitation Medicine
engineering, which studies various assistive categories and explores how devices can be
made to meet the wants of the user, necessities of disability, and the regulations of the
government (FDA). Courses taken throughout his college career have provided a range
of skill sets that can be drawn upon to successfully implement the project.

- 31 -

12. Intellectual Contributions
The team will be responsible for writing all of the code necessary to ensure the

completion of this project. To achieve this, the team will develop custom programs with
the ability to convert the data provided by the sensors to useable information that can be
relayed to the user in the form of audio alerts.

Brandon Bernier is in charge of the overall embedded system design, sensors,

microcontrollers, battery and power management, and the design of the printed circuit
boards (PCBs) necessary for the peripheral devices. Brandon has purchased ultrasonic
sensors, accelerometers, and Atmel’s ATtiny1634 microcontrollers. He is responsible for
designing the circuitry and coding the microcontrollers. In terms of the PCBs, Brandon will
initially develop the layout for the necessary boards in a computer program, then send the
design out to be printed by a manufacturer. He will also assist in designing the 3D model
for the 3D-printed housings. In addition, he will handle the Bluetooth connections in the
Android application and ensuring it will work with two devices simultaneously. The
majority of the Bluetooth code will be based upon the Bluetooth Chat example provided by
Google on its Android website.21

Srinivas Tapa is in charge of algorithms and data processing for the Android application
and the housing for the peripheral devices. Srinivas will develop the code and algorithm to
differentiate between relevant and irrelevant objects as well as notifying the user to a clear
path. Also, how often to notify the user about an object in their path and when batteries
are low needs to be handled within the application. Finally, Srinivas will be in charge of all
mechanical drawings of the housing and ensuring they get 3D printed. This also includes
other components necessary to the housing design such as the gimbal and Velcro strap of
the cane attachment.

13. Teaming Arrangements
The Collision Avoidance System is broken into the following components:

Brandon Bernier is responsible for the embedded system design and implementation,
microcontrollers, sensors, battery and power management, PCBs, and testing. On the
application side, he is responsible for creating the simultaneous Bluetooth connections so
that the data provided from the peripheral devices can be properly processed.

Srinivas Tapa is responsible for creation of algorithms and data processing for the
application, and housing/strap creation for the peripheral devices, including all mechanical
drawings.

- 32 -

14. References
1 http://www.who.int/mediacentre/factsheets/fs282/en/
2 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04539488
3 http://img1.wfrcdn.com/lf/49/hash/4370/1757228/1/Deluxe+Folding+Blind+Cane.jpg
4 http://www.disabilitystatistics.org/reports/census.cfm?statistic=1
5 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04539488

6 http://www.ambutech.com/iglasses

7 http://www.ncbi.nlm.nih.gov/pubmed/21820535
8 http://maxbotix.com/documents/MB1030_Datasheet.pdf

9 https://www.sparkfun.com/datasheets/Components/General/MMA7361L.pdf
10 http://www.atmel.com/Images/Atmel-8303-8-bit-AVR-Microcontroller-tinyAVR-
ATtiny1634_Datasheet.pdf
11 ftp://imall.iteadstudio.com/IM120417010_BT_Shield_v2.2/DS_BluetoothHC05.pdf
12 https://www.sparkfun.com/datasheets/Prototyping/tps61200.pdf
13 https://www.sparkfun.com/datasheets/Batteries/UnionBattery-1000mAh.pdf
14 https://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf

15 https://www.sparkfun.com/products/11231
16 http://developer.android.com/guide/topics/connectivity/bluetooth.html
17 http://standards.ieee.org/findstds/standard/802.15.1-2005.html
18 http://www.jedec.org/sites/default/files/docs/MS-013E.pdf
19 http://www.usb.org/developers/docs/

20 http://www.jedec.org/sites/default/files/docs/JESD99C.pdf
21https://android.googlesource.com/platform/development/+/25b6aed7b2e01ce7bdc0df
a1a79eaf009ad178fe/samples/BluetoothChat/src/com/example/android/BluetoothChat/
BluetoothChatService.java

http://www.who.int/mediacentre/factsheets/fs282/en/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04539488
http://img1.wfrcdn.com/lf/49/hash/4370/1757228/1/Deluxe+Folding+Blind+Cane.jpg
http://www.disabilitystatistics.org/reports/census.cfm?statistic=1
http://www.disabilitystatistics.org/reports/census.cfm?statistic=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04539488
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04539488
http://www.ambutech.com/iglasses
http://www.ncbi.nlm.nih.gov/pubmed/21820535
http://www.ncbi.nlm.nih.gov/pubmed/21820535
http://maxbotix.com/documents/MB1030_Datasheet.pdf
https://www.sparkfun.com/datasheets/Components/General/MMA7361L.pdf
http://www.atmel.com/Images/Atmel-8303-8-bit-AVR-Microcontroller-tinyAVR-ATtiny1634_Datasheet.pdf
http://www.atmel.com/Images/Atmel-8303-8-bit-AVR-Microcontroller-tinyAVR-ATtiny1634_Datasheet.pdf
ftp://imall.iteadstudio.com/IM120417010_BT_Shield_v2.2/DS_BluetoothHC05.pdf
https://www.sparkfun.com/datasheets/Prototyping/tps61200.pdf
https://www.sparkfun.com/datasheets/Batteries/UnionBattery-1000mAh.pdf
https://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf
https://www.sparkfun.com/products/11231
http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://standards.ieee.org/findstds/standard/802.15.1-2005.html
http://www.usb.org/developers/docs/
http://www.jedec.org/sites/default/files/docs/JESD99C.pdf
https://android.googlesource.com/platform/development/+/25b6aed7b2e01ce7bdc0dfa1a79eaf009ad178fe/samples/BluetoothChat/src/com/example/android/BluetoothChat/BluetoothChatService.java
https://android.googlesource.com/platform/development/+/25b6aed7b2e01ce7bdc0dfa1a79eaf009ad178fe/samples/BluetoothChat/src/com/example/android/BluetoothChat/BluetoothChatService.java
https://android.googlesource.com/platform/development/+/25b6aed7b2e01ce7bdc0dfa1a79eaf009ad178fe/samples/BluetoothChat/src/com/example/android/BluetoothChat/BluetoothChatService.java

- 33 -

15. Appendices

Appendix A: Mechanical Drawings

Figure 15.1: Headset mechanical drawing.

Figure 15.2: Headset lid mechanical drawing.

Figure 15.3: Headset attachment 3D rendering.

- 34 -

Figure 15.4: Cane attachment mechanical drawing.

Figure 15.5: Cane attachment lid mechanical drawing.

Figure 15.6: Cane attachment lid mechanical drawing.

Figure 15.7: Sensor casing mechanical drawing.

Figure 15.8: Sensor casing 3D rendering.

- 35 -

Figure 15.9: Cane attachment 3D rendering.

- 36 -

Appendix B: Software Flowcharts

Figure 15.10: Headset/cane attachment execution flowchart.

- 37 -

Figure 15.11: Execution flowchart for Bluetooth module.

- 38 -

Figure 15.12: Data processing algorithm execution flowchart.

- 39 -

Figure 15.13: Text-to-speech notification generator module execution flowchart.

- 40 -

Appendix C: Gantt Chart

Figure 15.14: Full Gantt chart (Part 1).

Figure 15.15: Full Gantt chart (Part 2).

- 41 -

Figure 15.16: Full Gantt chart (Part 3).

Figure 15.17: Timeline with milestones from Gantt chart in Microsoft Project.

- 42 -

Appendix D: Economic Analysis Data

Table 15.1: Total labor costs spreadsheet for Labor Costs vs. Time Graph.

W
e
e
k
 #

L
a

b
o

r C
o

s
t (p

e
r

w
e
e
k
 - in

 $
)

P
ro

je
c
t M

a
n

a
g

e
r

L
a

b
o

r C
o

s
t (p

e
r

w
e
e
k
 - in

 $
)

D
e
s
ig

n
 E

n
g

in
e

e
r

L
a

b
o

r C
o

s
t (p

e
r

w
e
e
k
 - in

 $
)

H
a
rd

w
a
re

E
n

g
in

e
e
r

L
a

b
o

r C
o

s
t (p

e
r

w
e
e
k
 - in

 $
)

S
o

ftw
a
re

 E
n

g
in

e
e
r

L
a

b
o

r C
o

s
t (p

e
r

w
e
e
k
 - in

 $
)

T
e

s
t E

n
g

in
e

e
r

L
a

b
o

r C
o

s
t (p

e
r

w
e
e
k
 - in

 $
)

T
e

c
h

n
ic

a
l W

rite
r

T
o

ta
l W

e
e
k
ly

 B
u

rn

R
a
te

 D
u

e
 to

 L
a
b

o
r

T
o

ta
l L

a
b

o
r C

o
s

ts

1 $132.00 $171.00 $303.00 $303.00

2 $132.00 $171.00 $303.00 $606.00

3 $132.00 $171.00 $303.00 $909.00

4 $132.00 $132.00 $1,041.00

5 $132.00 $30.00 $162.00 $1,203.00

6 $132.00 $30.00 $162.00 $1,365.00

7 $132.00 $30.00 $162.00 $1,527.00

8 $132.00 $30.00 $162.00 $1,689.00

9 $132.00 $30.00 $162.00 $1,851.00

10 $132.00 $30.00 $162.00 $2,013.00

11 $132.00 $30.00 $162.00 $2,175.00

12 $132.00 $30.00 $162.00 $2,337.00

13 $132.00 $360.00 $200.00 $150.00 $842.00 $3,179.00

14 $132.00 $360.00 $200.00 $150.00 $842.00 $4,021.00

15 $132.00 $360.00 $200.00 $150.00 $842.00 $4,863.00

16 $132.00 $360.00 $200.00 $150.00 $842.00 $5,705.00

17 $132.00 $132.00 $5,837.00

18 $132.00 $132.00 $5,969.00

19 $132.00 $90.00 $222.00 $6,191.00

20 $132.00 $132.00 $6,323.00

21 $132.00 $240.00 $400.00 $36.00 $808.00 $7,131.00

22 $132.00 $240.00 $400.00 $36.00 $808.00 $7,939.00

23 $132.00 $240.00 $400.00 $36.00 $808.00 $8,747.00

24 $132.00 $240.00 $400.00 $36.00 $808.00 $9,555.00

25 $132.00 $240.00 $400.00 $36.00 $60.00 $868.00 $10,423.00

26 $132.00 $240.00 $400.00 $36.00 $808.00 $11,231.00

27 $132.00 $57 $450 $639.00 $11,870.00

28 $132.00 $57 $450 $639.00 $12,509.00

29 $132.00 $384 $400 $60 $976.00 $13,485.00

30 $132.00 $384 $400 $60 $976.00 $14,461.00

31 $132.00 $384 $400 $60 $976.00 $15,437.00

32 $132.00 $171 $48 $40 $391.00 $15,828.00

33 $132.00 $171 $48 $40 $391.00 $16,219.00

34 $132.00 $171 $48 $40 $391.00 $16,610.00

35 $132.00 $171 $48 $40 $391.00 $17,001.00

36 $132.00 $171 $48 $40 $391.00 $17,392.00

37 $132.00 $171 $48 $40 $391.00 $17,783.00

38 $132.00 $171 $48 $40 $391.00 $18,174.00

39 $132.00 $48 $120 $60 $360.00 $18,534.00

40 $132.00 $48 $120 $72 $60 $432.00 $18,966.00

41 $132.00 $48 $120 $72 $60 $432.00 $19,398.00

42 $132.00 $48 $120 $72 $60 $432.00 $19,830.00

43 $132.00 $48 $120 $72 $60 $432.00 $20,262.00

44 $132.00 $48 $120 $72 $60 $432.00 $20,694.00

45 $132.00 $48 $120 $72 $60 $432.00 $21,126.00

46 $132.00 $48 $120 $72 $60 $432.00 $21,558.00

47 $132.00 $72 $60 $264.00 $21,822.00

48 $132.00 $72 $60 $264.00 $22,086.00

49 $132.00 $72 $60 $264.00 $22,350.00

50 $132.00 $72 $60 $264.00 $22,614.00

Totals $6,600 $1,824 $4,752 $5,640 $1,008 $2,790

 "=Actual data up to week #46 "=Estimated data for week #47 to week #50

 "=PROJECTED cumulative spending to end of project

- 43 -

Appendix E: Module Matrix

Project Phase
Estimated Hours

Left
Actual
Hours

Percent
Completed

Headset & Cane Attachment Sub-Systems 0 576 100%

Ultrasonic & Accelerometer Modules 0 148 100%

Preliminary Research 0 10 100%

Design 0 15 100%

Implementation 0 40 100%

Testing 0 45 100%

Error Correction 0 38 100%

Microcontroller Coding 0 145 100%

Preliminary Research 0 10 100%

Design 0 10 100%

Implementation 0 55 100%

Testing 0 40 100%

Error Correction 0 30 100%

Bluetooth Transceiver Interfacing 0 96 100%

Preliminary Research 0 10 100%

Design 0 10 100%

Implementation 0 26 100%

Testing 0 25 100%

Error Correction 0 25 100%

Battery & Power Management Design 0 77 100%

Preliminary Research 0 15 100%

Design 0 25 100%

Implementation 0 30 100%

Testing 0 5 100%

Error Correction 0 2 100%

Printed Circuit Board Design 0 110 100%

Preliminary Research 0 15 100%

Design 0 50 100%

Implementation 0 20 100%

Testing 0 10 100%

Error Correction 0 15 100%

Android Application Sub-Systems 157 473 75%

Bluetooth Module 90 145 62%

Connection between three phones 0 35 100%

Connection between phone and headset/cane 15 10 40%

Integration of code with algorithm JAVA version 40 0 0%

Testing 10 50 83%

Implementation 10 10 50%

- 44 -

Error Correction 15 40 73%

Data Processing (Algorithm) Module 55 265 83%

"Fake" Data creator module 0 65 100%

Algorithm MATLAB version 0 50 100%

Algorithm JAVA version 0 40 100%

Testing 15 50 77%

Implementation 20 25 56%

Error Correction 20 35 64%

Text-to-Speech Notification Generator 12 63 84%

Coding 2 35 95%

Testing 5 15 75%

Implementation 2 3 60%

Error Correction 3 10 77%

Table 15.2: Module Matrix.

- 45 -

Appendix F: Board Fabrication Details

Figure 15.18: Schematic for headset and cane attachment sub-systems.

- 46 -

Quantity Description of the Part Manufacturer Manufacturer's Part Number Supplier Supplier's Catalog Number Cost Total Cost

2 ATtiny1634 8-bit MCU Atmel ATTINY1634-SU Mouser 556-ATTINY1634-SU $1.76 $3.52

2 3.7V Li-Ion battery - 1000mAh Unionfortune 63450 Sparkfun PRT-00339 $11.95 $23.90

2 LV-MaxSonar-EZ3 MaxBotix MB1030 Sparkfun SEN-08501 $22.36 $44.72

2 Three-axis low-g accelerometer Freescale Semiconductor MMA7361LCR1 Sparkfun COM-09605 $7.95 $15.90

2 HC-05 Bluetooth transceiver ITead Studio HC-05 Ebay HC-05 $9.28 $18.56

2 PowerCell Charger/Booster Sparkfun PRT-11231 Sparkfun PRT-11231 $15.96 $31.92

2 SMD right-angle switch On Shine Enterprise KPS-1290 Sparkfun COM-10860 $0.76 $1.52

2 Single Schmitt-Trigger inverter Texas Instruments SN74LVC1G14DBVR Mouser 595-SN74LVC1G14DBVR $0.49 $0.98

2 4MHz crystal oscillator Fox FOXSLF/040 Mouser 559-FOXS040-LF $0.21 $0.42

2 Operational Amplifier ST Microelectronics TSV731 Mouser 511-TSV731ICT $1.70 $3.40

4 20pF Capacitor Vishay VJ0402D200JXBAJ Mouser 77-VJ0402D200JXBAJ $0.30 $1.20

2 3.3nF Capacitor Vishay VJ0402Y332KXJCW1BC Mouser 77-VJ0402Y332KXJCBC $0.06 $0.12

2 0.1uF Capacitor Murata Manufacturing GRM155R71C104KA88D Mouser 81-GRM155R71C104KA88 $0.10 $0.20

2 10kΩ Resistor Vishay TNPW060310K0DEEA Mouser 71-TNPW060310K0DEEA $0.09 $0.18

2 10MΩ Resistor Vishay MCT06030C1005FP500 Mouser 594-MCT06030C1005FP5 $0.07 $0.14

2 Printed Circuit Board OSHPark OSHPark $7.95 $15.90

2 Mini Ball Bearings Losi LOSB1528 Amazon B000KFW2C4 $1.52 $3.04

12 4-40 PCB Mounting Screws TubeDepot MS-ST-4-40 TubeDepot MS-ST-4-40 $0.14 $1.40

 Total $187.62
Table 15.3: Bill of Materials (BOM).

- 47 -

Figure 15.19: Printed Circuit Board layout.

- 48 -

Figure 15.20: PCB 3D rendering.

- 49 -

Figure 15.21: PCB outer dimensions.

- 50 -

Figure 15.22: PCB drill hole dimensions.

- 51 -

Figure 15.23: Entire PCB system dimensions.

Note: Additional two drill holes at top show how the PowerCell is to be mounted with this PCB.

- 52 -

Figure 15.24: On/off switch location dimensions.

- 53 -

Figure 15.25: Printed PCB top rendering.

- 54 -

Figure 15.26: Printed PCB bottom rendering.

- 55 -

Figure 15.27: Final soldered headset circuit.

- 56 -

Figure 15.28: Entire circuit with battery and ultrasonic sensor.

Figure 15.29: Prototype headset prior to housing addition.

- 57 -

Figure 15.30: 3D-printed headset housing.

Figure 15.31: 3D-printed headset housing interior.

Figure 15.32: Battery fitted into headset housing.

Figure 15.33: Circuit fitted into headset housing.

Figure 15.34: Mini USB connection for charging.

- 58 -

Figure 15.35: 3D-printed cane attachment housing.

Figure 15.36: Cane attachment housing inside.

Figure 15.37: Assembled headset housing with lid.

- 59 -

Figure 15.38: Assembled cane attachment housing with lids.

- 60 -

Appendix G: Test Results

Figure 15.39: Ultrasonic rangefinder characteristic curve.

Figure 15.40: Accelerometer y-axis output characteristic curve.

0

12

24

36

48

60

72

84

0 12 24 36 48 60 72 84

A
ct

u
a

l
D

is
ta

n
ce

 [
In

ch
e

s]

Measured Distance [Inches]

Measured vs. Actual Distance for
Ultrasonic Rangefinder

Measured

Expected

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90D
e

g
re

e
s

Degrees

Measured vs. Actual Degree for Y-Axis

Measured

Expected

- 61 -

Figure 15.41: ATtiny1634 Active Supply Current vs. Frequency (1-12MHz)

- 62 -

Appendix H: Source Code
/* Brandon Bernier
 * ECE 4925 Senior Design
 * Collision Avoidance System for the Visually Impaired
 * Headset Sub-System
 */

#define F_CPU 4000000 // 4MHz Clock
#define BAUD_VAL 25 // 9600 bps for 4MHz clock
#define LOW_BATT 600 // 20% battery left
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <stdio.h>

/* putchar into UDR0 */
int usart_putchar(char c, FILE *stream){
 if(c == '\n') usart_putchar('\r', stream);
 while(!(UCSR0A&(1<<UDRE0))); // Wait until UDR is empty
 UDR0 = c;
 return 0;
}

/* getchar from UDR0 */
int usart_getchar(FILE *stream){
 if(UCSR0A&(1<<RXC0)) return UDR0;
 else return 0;
}

/* Redirect stdio stream to new functions */
FILE usart_str = FDEV_SETUP_STREAM(usart_putchar, usart_getchar, _FDEV_SETUP_RW);

/* Function Prototypes */
void initialize(void);
void start_adc(void);
unsigned char decode_number(unsigned char x);

/* Global Variables */
volatile unsigned char count=0, accel=1;
volatile unsigned char d=0, distance=0;
volatile int degree,vbatt,vbatt_old;
volatile int battery[5]={1024,1024,1024,1024,1024};

int main(void){
 initialize();
 while(1) start_adc();

 return 0;
}

/* USART0 Receive Interrupt Vector */
/* Program execution jumps here when USART0 receives data.
 * Serial data streams from the ultrasonic sensor one character
 * at a time in the form "R255\r" where R denotes the start of a
 * new reading, followed by 3 digits (distance in inches).
 * This section of code parses this input and creates an 8-bit
 * unsigned char holding the value in inches.
 */
ISR(USART0_RX_vect){
 unsigned char x;
 x = decode_number(getchar()); // Gets the next character from the UDRE
 if(x == 'R'){ // Count variable keeps track of which
 count = 0; // digit we are looking for
 d = 0;
 }
 else if(x == '\r'){}
 else{
 if(count == 1) // Reading the hundreds place
 d += x*100;
 else if(count == 2) // Reading the tens place
 d+= x*10;
 else if(count == 3){ // Reading the ones place
 d += x;
 distance = d; // Updates distance
 printf("HS%3d HA%4d\r",distance,degree); // Send out new set of data
 }
 }
 count = (count+1)%5;
}

- 63 -

/* ADC Complete Interrupt Vector */
/* Program execution jumps here once the started ADC completes.
 * Combines lower 8 and upper 4 bits of the 10-bit ADC value.
 * Converts 10-bit ADC value to degrees.
 */
ISR(ADC_vect){
 unsigned char high,low;
 int adc=0;
 low = ADCL;
 high = ADCH;
 adc |= (high<<2)|low;

 if(accel){
 //printf("%d\r",adc); // Print raw ADC value
 degree = (int)(adc-480);
 degree = degree*90/240;
 //printf("degree:%5d\r",degree);
 }
 else{
 battery[0] = battery[1];
 battery[1] = battery[2];
 battery[2] = battery[3];
 battery[3] = battery[4];
 battery[4] = adc;
 vbatt = (battery[0]+battery[1]+battery[2]+battery[3]+battery[4])/5;
 //printf("Battery ADC: %d\n",vbatt); // Print raw ADC value
 if(vbatt<LOW_BATT)
 printf("HL\n");
 accel = 1;
 ADMUX &= 0xF0; // Reset ADC0 as input
 }
}

/* Timer1 Overflow Interrupt Vector */
/* 16-bit counter counts at 4Mhz/1024
 * When the counter overflows, the ADC input is changed
 * to the battery voltage, allowing us to read the current
 * voltage level roughly every 16 seconds.
 */
ISR(TIMER1_OVF_vect){
 accel = 0;
 ADMUX |= 0x01; // Select ADC1 (VBAT) as input PA4
 start_adc();
}

/* Initialization Routine */
/* Initializes all necessary registers and enables
 * the necessary functionality.
 */
void initialize(void){
 stdout = stdin = &usart_str; // Directs usart_str to stdout and stdin
 DDRA = 0x02; // ADC Port inputs
 PORTA = 0x00;
 UBRR0H = (unsigned char)(BAUD_VAL>>8); // Set Baud Rate
 UBRR0L = (unsigned char)(BAUD_VAL&0x00FF);
 UCSR0B = (1<<RXEN0)|(1<<TXEN0); // Enable RX & TX
 UCSR0B |= (1<<RXCIE0); // Enable RXC Interrupt
 UCSR0C = (3<<UCSZ00); // Set 8-N-1

 ADCSRA |= (1<<ADEN)|(1<<ADIE); // Enable AD converter & interrupt
 ADCSRA |= (5<<ADPS0); // Set prescaler to 64
 ADCSRB |= (1<<ADLAR); // Left adjust result
 ADMUX |= (0<<REFS0); // Select VCC as reference
 ADMUX &= 0xF0; // Select ADC0 (x) as input PA3

 TIMSK |= (1<<TOIE1); // Timer Overflow Interrupt Enable
 TCCR1B |= (5<<CS10); // Set Timer1 Clock Prescaler to 1024

 sei(); // Enable global interrupts
}

/* Start ADC Function */
/* Starts the ADC conversion then delays 1ms
 */
void start_adc(void){
 ADCSRA |= (1<<ADSC); // Start ADC conversion
 _delay_ms(1); // Delay 1ms
}

- 64 -

/* Decode Number Function */
/* Decodes ASCII character to actual number.
 * Returns value as an 8-bit binary number stored as an unsigned char.
 * In the case of 'R' and '\r' the function simply passes them through.
 */
unsigned char decode_number(unsigned char x){
 unsigned char temp=0;
 switch(x){
 case '0': temp=0; break;
 case '1': temp=1; break;
 case '2': temp=2; break;
 case '3': temp=3; break;
 case '4': temp=4; break;
 case '5': temp=5; break;
 case '6': temp=6; break;
 case '7': temp=7; break;
 case '8': temp=8; break;
 case '9': temp=9; break;
 case 'R': temp='R'; break;
 case '\r': temp='\r'; break;
 default: break;
 }
 return temp;
}

Figure 15.42: AVR source code for headset sub-system microcontroller.

clear all

close all

clc

% delay=[10 1/20; 10 11; 20 22];

delay= [0 0];

load('Full_Sec_person_Avg.mat');

load('Half_Sec_person_Avg.mat');

load('Wall_Noise.mat');

load('Wall_Noise2.mat');

load('Value_Person.mat');

load('Car.mat');

load('Cane_Rotation_Test.mat');

[obj]=data_function(3, delay, 240, 360, 5, 20); %Import in "fake" data as strings

% Creates empty places to store Time, Type, and Values

% in individual columns.

t = zeros(length(obj),1);

type = cell(length(obj),1);

value = zeros(length(obj)/4,5);

% This for loop goes through each cell putting time, type, and value into

% the already created empty spaces.

k=1;

for i = 1:length(obj)

 temp = obj{i}; %Sets temp to the value of the cell at the i^th value of Data

 temp = temp(temp~=' '); %Looks through all of temp and gets rid of spaces

 ind1 = find(temp == 'H'); %Looks through the the temp to find if the type starts

with "H" or "G"

 ind2 = find(temp == 'G');

 if length(ind1) > length(ind2) %Since each i^th cell will only have "H" or "G"

ind1 or ind2 will have a value each time and not both

 ind = ind1;

 else

 ind = ind2;

 end

- 65 -

 value(k,1) = str2double(temp(1:ind-1)); %This convert string value of time to a

number.

 if strcmp(temp(ind:ind+1), 'HS')==1 %Look for where the data is from

 value(k,2)=str2double(temp(ind+2:end))/12; %Convert string after the heading

to number value

 if value(k,2)<1 %place the values into values

matrix

 value(k,2)=0;

 end

 elseif strcmp(temp(ind:ind+1), 'HA')==1

 value(k,3)=str2double(temp(ind+2:end));

 elseif strcmp(temp(ind:ind+1), 'GS')==1

 value(k,4)=str2double(temp(ind+2:end))/12;

 if value(k,4)<1

 value(k,4)=0;

 end

 elseif strcmp(temp(ind:ind+1), 'GA')==1

 value(k,5)=str2double(temp(ind+2:end));

 k=k+1;

 end

end

Moving Average

ravg = zeros(length(value),2);

x=1;

% value=person;

% value=car;

while x<=length(value)

 if x<(length(value)-9)

 ravg(x,1) = mean(value(x:x+9,1));

 ravg(x,2) = mean(value(x:x+9,2));

 ravg(x,3) = mean(value(x:x+9,3));

 ravg(x,4) = mean(value(x:x+9,4));

 ravg(x,5) = mean(value(x:x+9,5));

 x=x+1;

 else

 ravg(x,1)= mean(value(x:end,1));

 ravg(x,2)= mean(value(x:end,2));

 ravg(x,3)= mean(value(x:end,3));

 ravg(x,4)= mean(value(x:end,4));

 ravg(x,5)= mean(value(x:end,5));

 x=x+1;end

end

x=2;

i=1;

j=1;

temp=6;

temp2=8;

temp3=30;

message=cell(1,3);

message2=cell(1,3);

% ravg=cane_test;

% ravg=f_sec_person_avg;

% ravg=h_sec_person_avg;

% ravg=wall_noise;

% ravg=wall_noise2;

while x<=length(ravg)

 if ravg(x,3)>=-20 && ravg(x,3)<=20 %Object must be within the visual parameters

- 66 -

 if ravg(x,2)>=0 && ravg(x,2)<=5 && ravg(x,2)<=temp-1 %Running avg. values are

checked to see if they are between 0-5ft

 message{i,1}=ravg(x,1);

 message{i,2}=ravg(x,2);

 message{i,3}=[num2str(round(message{i,1})) 's: ' 'Head level object is '

num2str(round(message{i,2})) 'ft ' 'ahead']; %Print to a messages file

 temp=message{i,2}; %Set to create the messages only when a foot apart

 i=i+1;

 elseif (ravg(x-1,2)>=0 && ravg(x-1,2)<=5) &&(ravg(x,2)-ravg(x-1,2)>0)

%Recognizes difference between objects

 message{i,1}=ravg(x,1);

 message{i,3}=[num2str(round(message{i,1})) 's: ' 'CLEAR'];

 i=i+1;

 temp=6;

 end

 end

 if ravg(x,5)>=-30 && ravg(x,5)<=30

 if ravg(x,4)>=0 && ravg(x,4)<=7 && ravg(x,4)<=temp2-1 %Running avg. values are

checked to see if they are between 0-7ft

 message2{j,1}=ravg(x,1);

 message2{j,2}=ravg(x,4);

 message2{j,3}=[num2str(round(message2{j,1})) 's: ' 'Ground level object is

' num2str(round(message2{j,2})) 'ft ' 'ahead'];

 temp2=message2{j,2};

 j=j+1;

 elseif (ravg(x-1,4)>=0 && ravg(x-1,4)<=7) && (ravg(x,4)-ravg(x-1,4)>0)

 message2{j,1}=ravg(x,1);

 message2{j,3}=[num2str(round(message2{j,1})) 's: ' 'CLEAR'];

 j=j+1;

 temp2=8;

 end

 elseif (ravg(x,5)<=-30 || ravg(x,5)>=30) && ravg(x,4)<=temp3-1 %Situation if the

cane is not rotated correctly.

 if ravg(x,5)<=-30 && ravg(x,5)>=-180

 message2{j,1}=ravg(x,1);

 message2{j,2}=ravg(x,4);

 message2{j,3}=[num2str(round(message2{j,1})) 's: ' 'Rotate CW'];

 temp3=message2{j,2};

 j=j+1;

 elseif ravg(x,5)>=30 && ravg(x,5)<=180

 message2{j,1}=ravg(x,1);

 message2{j,2}=ravg(x,4);

 message2{j,3}=[num2str(round(message2{j,1})) 's: ' 'Rotate CCW'];

 temp3=message2{j,2};

 j=j+1;

 end

 end

x=x+1;

end

Figure 15.43: Preliminary data processing algorithm coded in MATLAB.

- 67 -

 case MESSAGE_READ://head:

 char readBuf = (char)msg.arg1;

 buffer[count]= readBuf;

 count++;

 if (readBuf=='\n')

 {

 buffer[count]='\0';

 String readMessage= new String(buffer);

 // mConversationArrayAdapter.add(readMessage);

 count=0;

 buffer= new char[buffer.length];

 if (readMessage.startsWith(" HS")){

 String buffer2= readMessage;

 List<String> itemsInString =

Arrays.asList(buffer2.split(" "));

 if (itemsInString.contains("HS")){

 headList = (Double.parseDouble

(itemsInString.get(2))/12);

 }

 if (itemsInString.contains("HA")){

 headAccelList =

(Double.parseDouble(itemsInString.get(4)));

 }

 //Sum of HS

 sum_10 = sum_9;

 sum_9 = sum_8;

 sum_8 = sum_7;

 sum_7 = sum_6;

 sum_6 = sum_5;

 sum_5 = sum_4;

 sum_4 = sum_3;

 sum_3 = sum_2;

 sum_2 = sum_1;

 sum_1 = headList;

 double mean =

(sum_10+sum_9+sum_8+sum_7+sum_6+sum_5+sum_4+sum_3+sum_2+sum_1)/ 10;

 runningAvg [0][0] =

Math.round(mean*1000.0)/1000.0;

 //Sum of HA

 sum2_10 = sum2_9;

 sum2_9 = sum2_8;

 sum2_8 = sum2_7;

 sum2_7 = sum2_6;

 sum2_6 = sum2_5;

 sum2_5 = sum2_4;

 sum2_4 = sum2_3;

 sum2_3 = sum2_2;

 sum2_2 = sum2_1;

 sum2_1 = headAccelList;

- 68 -

 double mean2 =

(sum2_10+sum2_9+sum2_8+sum2_7+sum2_6+sum2_5+sum2_4+sum2_3+sum2_2+sum2_1)/ 10;

 runningAvg [0][1] =

Math.round(mean2*1000.0)/1000.0;

 if(runningAvg[0][1]>=-20.0 && runningAvg[0][1]<=20.0){

 if((runningAvg[0][0]>=0.0 && runningAvg[0][0]<=5.0)

&& runningAvg[0][0]<=(temp6-1.0)){

 temp4 = runningAvg[0][0];

 temp5 = Double.valueOf(Math.round(temp4*2));

 message[0][0] = String.valueOf(((temp5)/2));

 message[0][1] = ("Head level object is

"+(message[0][0])+"ft ahead");

 if (temp4== 0.0){

 message[0][1] = null;

 }

 temp6 = temp4;

 }

 else if((runningAvg[0][0]-temp6)>0.0){

 message[0][1] = ("CLEAR");

 temp6=6.0;

 }

 }

 if (message[0][1]== null){

 message[0][1]="nothing";

 }

 mConversationArrayAdapter.add(message[0][1]);

 }

 }

break;
Figure 15.44: Data processing algorithm initial Java implementation.

- 69 -

Changes to BluetoothChat code:

 char[] buffer = new char[100];

 int count=0;

case MESSAGE_READ:

 char readBuf = (char)msg.arg1;

 buffer[count]= readBuf;

 count++;

 if (readBuf=='\n')

 {

 String temp= new String(buffer);

 mConversationArrayAdapter.add(temp);

 count=0;

 buffer= new char[buffer.length];

 // if (temp.startsWith("HS")){}

 }

private class ConnectedThread extends Thread {

 private final BluetoothSocket mmSocket;

 private final InputStream mmInStream;

 private final OutputStream mmOutStream;

 public ConnectedThread(BluetoothSocket socket) {

 Log.d(TAG, "create ConnectedThread");

 mmSocket = socket;

 InputStream tmpIn = null;

 OutputStream tmpOut = null;

 // Get the BluetoothSocket input and output streams

 try {

 tmpIn = socket.getInputStream();

 tmpOut = socket.getOutputStream();

 } catch (IOException e) {

 Log.e(TAG, "temp sockets not created", e);

 }

 mmInStream = tmpIn;

 mmOutStream = tmpOut;

 }

 public void run() {

 Log.i(TAG, "BEGIN mConnectedThread");

 byte[] buffer = new byte[1024];

 int bytes;

 // Keep listening to the InputStream while connected

 while (true) {

 try {

 // Read from the InputStream

 bytes = mmInStream.read();

//buffer

 // Send the obtained bytes to the UI Activity

 mHandler.obtainMessage(BluetoothChat.MESSAGE_READ, bytes, -1, bytes)

 .sendToTarget();

 } catch (IOException e) {

 Log.e(TAG, "disconnected", e);

 connectionLost();

 break;

 }}

Figure 15.45: Changes made to Bluetooth Chat example.

- 70 -

Appendix I: Datasheets

Datasheet 1: ATtiny1634 Datasheet

http://www.atmel.com/Images/Atmel-8303-8-bit-AVR-Microcontroller-tinyAVR-
ATtiny1634_Datasheet.pdf

http://www.atmel.com/Images/Atmel-8303-8-bit-AVR-Microcontroller-tinyAVR-ATtiny1634_Datasheet.pdf
http://www.atmel.com/Images/Atmel-8303-8-bit-AVR-Microcontroller-tinyAVR-ATtiny1634_Datasheet.pdf

- 71 -

- 72 -

Datasheet 2: 3.7V 1000mAh Li-Po Battery Datasheet

https://www.sparkfun.com/datasheets/Batteries/UnionBattery-1000mAh.pdf

https://www.sparkfun.com/datasheets/Batteries/UnionBattery-1000mAh.pdf

- 73 -

- 74 -

Datasheet 3: Ultrasonic Sensor Datasheet

http://www.maxbotix.com/documents/MB1030_Datasheet.pdf

http://www.maxbotix.com/documents/MB1030_Datasheet.pdf

- 75 -

- 76 -

Datasheet 4: 4MHz Crystal Oscillator Datasheet

http://www.mouser.com/Search/ProductDetail.aspx?R=FOXSLF/040virtualkey55910000
virtualkey559-FOXS040-LF

http://www.mouser.com/Search/ProductDetail.aspx?R=FOXSLF/040virtualkey55910000virtualkey559-FOXS040-LF
http://www.mouser.com/Search/ProductDetail.aspx?R=FOXSLF/040virtualkey55910000virtualkey559-FOXS040-LF

- 77 -

Datasheet 5: HC-05 Bluetooth Transceiver Datasheet

ftp://imall.iteadstudio.com/Modules/IM120723009/DS_IM120723009.pdf

ftp://imall.iteadstudio.com/Modules/IM120723009/DS_IM120723009.pdf

- 78 -

Datasheet 6: Inverter Datasheet

http://www.ti.com/lit/ds/sces647a/sces647a.pdf

http://www.ti.com/lit/ds/sces647a/sces647a.pdf

- 79 -

- 80 -

Datasheet 7: MMA7361 Accelerometer Datasheet

https://www.sparkfun.com/datasheets/Components/General/MMA7361L.pdf

https://www.sparkfun.com/datasheets/Components/General/MMA7361L.pdf

- 81 -

- 82 -

Datasheet 8: SMD Accelerometer Soldering Guide

http://www.freescale.com/files/sensors/doc/app_note/AN3484.pdf

http://www.freescale.com/files/sensors/doc/app_note/AN3484.pdf

- 83 -

- 84 -

- 85 -

Datasheet 9: Operational Amplifier Datasheet

http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/datasheet/DM00065944.pdf

http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00065944.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00065944.pdf

- 86 -

- 87 -

Datasheet 10: SMD Right Angle Switch Datasheet

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Components/Switches/SLIDE.pdf

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Components/Switches/SLIDE.pdf

- 88 -

Datasheet 11: Sparkfun PowerCell Quickstart Guide

https://www.sparkfun.com/tutorials/379

https://www.sparkfun.com/tutorials/379

- 89 -

Datasheet 12: Sparkfun PowerCell Schematic

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Prototyping/PowerCell-v13.pdf

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Prototyping/PowerCell-v13.pdf

- 90 -

Datasheet 13: 0.1µF Capacitor Datasheet

http://www.mouser.com/ds/2/281/product-235612.pdf

http://www.mouser.com/ds/2/281/product-235612.pdf

- 91 -

Datasheet 14: 3.3nF Capacitor Datasheet

http://www.mouser.com/ds/2/427/vjw1bcbascomseries-223529.pdf

http://www.mouser.com/ds/2/427/vjw1bcbascomseries-223529.pdf

- 92 -

Datasheet 15: 20pF Capacitor Datasheet

http://www.mouser.com/ds/2/427/vjhifreq-109303.pdf

http://www.mouser.com/ds/2/427/vjhifreq-109303.pdf

- 93 -

Datasheet 16: 10kΩ Datasheet

http://www.vishay.com/docs/28758/tnpw_e3.pdf

http://www.vishay.com/docs/28758/tnpw_e3.pdf

- 94 -

Datasheet 17: 10MΩ Datasheet

http://www.vishay.com/docs/28705/mc_pro.pdf

http://www.vishay.com/docs/28705/mc_pro.pdf

